Impact of the Penicillium chrysogenum genome on industrial production of metabolites



The genome sequence of Penicillium chrysogenum has initiated a range of fundamental studies, deciphering the genetic secrets of the industrial penicillin producer. More than 60 years of classical strain improvement has resulted in major but delicate rebalancing of the intracellular metabolism leading to the impressive penicillin titres of the current production strains. Several leads for further improvement are being followed up, including the use of P. chrysogenum as a cell factory for other products than β-lactam antibiotics.


Penicillium chrysogenum Genomics Antibiotics Metabolites Industrial production 


  1. Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H (2002) Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics 267:636–646CrossRefGoogle Scholar
  2. Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263:966–977CrossRefGoogle Scholar
  3. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535CrossRefGoogle Scholar
  4. Bovenberg RAL, Van den Berg MA, Hage S, Klaassen P, Meijrink B, Raamsdonk LM (2007) Production of compounds in a recombinant host. WO 2007122249Google Scholar
  5. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22CrossRefGoogle Scholar
  6. Brakhage AA, Al-Abdallah Q, Tüncher A, Spröte P (2005) Evolution of beta-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry 66:1200–1210CrossRefGoogle Scholar
  7. Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811CrossRefGoogle Scholar
  8. Braumann I, van den Berg MA, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44:1399–1414CrossRefGoogle Scholar
  9. Braumann I, van den Berg MA, Kempken F (2008) Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 53:287–297CrossRefGoogle Scholar
  10. Cantwell CA, Beckmann RJ, Dotzlaf JE, Fisher DL, Skatrud PL, Yeh WK, Queener SW (1990) Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Curr Genet 17:213–221CrossRefGoogle Scholar
  11. Cao YX, Qiao B, Lu H, Chen Y, Yuan YJ (2011) Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Appl Microbiol Biotechnol 89:1193–1202CrossRefGoogle Scholar
  12. Chooi YH, Cacho R, Tang Y (2010) Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem Biol 17:483–494CrossRefGoogle Scholar
  13. Dekker PJT, Edens L (2011) Proline-specific protease from Penicillium chrysogenum. EP20090753924Google Scholar
  14. Douma RD, de Jonge LP, Jonker CT, Seifar RM, Heijnen JJ, van Gulik WM (2010a) Intracellular metabolite determination in the presence of extracellular abundance: application to the penicillin biosynthesis pathway in Penicillium chrysogenum. Biotechnol Bioeng 107:105–115CrossRefGoogle Scholar
  15. Douma RD, Verheijen PJ, de Laat WT, Heijnen JJ, van Gulik WM (2010b) Dynamic gene expression regulation model for growth and penicillin production in Penicillium chrysogenum. Biotechnol Bioeng 106:608–618CrossRefGoogle Scholar
  16. Eichhorn H, Specht T, Zadra I (2007) Promoter sequences. EP20050028139Google Scholar
  17. Elander RP (2002) University of Wisconsin contributions to the early development of penicillin and cephalosporin antibiotics. SIM News 52:270–278Google Scholar
  18. Gardiner DM, Jarvis RS, Howlett BJ (2005) The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 42:257–263CrossRefGoogle Scholar
  19. Giles SS, Soukup AA, Lauer C, Shaaban M, Lin A, Oakley BR, Wang CC, Keller NP (2011) Cryptic Aspergillus nidulans antimicrobials. Appl Environ Microbiol 77:3669–3675CrossRefGoogle Scholar
  20. Fierro F, Barredo JL, Dıez B, Gutierrez S, Fernandez FJ, Martın JF (1995) The penicillin biosynthetic gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A 92:6200–6204CrossRefGoogle Scholar
  21. Fierro F, Montenegro E, Gutierrez S, Martın JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin biosynthetic gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:597–604CrossRefGoogle Scholar
  22. Fleming A (1929) On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
  23. García-Estrada C, Vaca I, Ullán RV, van den Berg MA, Bovenberg RA, Martín JF (2009) Molecular characterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol 9:104CrossRefGoogle Scholar
  24. García-Rico RO, Fierro F, Mauriz E, Gómez A, Fernández-Bodega MA, Martín JF (2008) The heterotrimeric Galpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology 154:3567–3578CrossRefGoogle Scholar
  25. Gidijala L, Kile JAKW, Douma RD, Sefar RM, Van Gulik WM, Bovenberg RAL, Veenhuis M, Van der Kleij IJ (2009) An engineered yeast efiiciently secreting penicillin. PLoS One 4:e8317CrossRefGoogle Scholar
  26. Gidijala L, Kiel JAKW, Bovenberg RA, van der Klei IJ, van den Berg MA (2011) Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol Genet Engineer Rev 27:1–32Google Scholar
  27. van Gulik WM, de Laat WT, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 20:602–618CrossRefGoogle Scholar
  28. Hans M (2010) Metabolic engineering of Penicillium chrysogenum: beta-lactams and beyond. Fourth Conference on Physiology of Yeast and Filamentous Fung, Rotterdam, The NetherlandsGoogle Scholar
  29. Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen KF, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77(9):3044–3051Google Scholar
  30. Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM (2009a) Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillin G production. BMC Genomics 10:75CrossRefGoogle Scholar
  31. Harris DM, Westerlaken I, Schipper D, van der Krogt ZA, Gombert AK, Sutherland J, Raamsdonk LM, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM (2009b) Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng 11:125–137CrossRefGoogle Scholar
  32. Hoff B, Pöggeler S, Kück U (2008) Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470CrossRefGoogle Scholar
  33. Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U (2010) Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell 9:1236–1250CrossRefGoogle Scholar
  34. Hou Y, Wang T, Long H, Zhu H (2007) Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin (Shanghai) 39:101–107CrossRefGoogle Scholar
  35. Jami MS, Barreiro C, García-Estrada C, Martín JF (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198CrossRefGoogle Scholar
  36. Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744CrossRefGoogle Scholar
  37. Janus D, Hoff B, Kück U (2009) Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. Microbiology 155:3946–3956CrossRefGoogle Scholar
  38. Jørgensen H, Nielsen J, Villadsen J, Møllgaard H (1995) Analysis of penicillin V biosynthesis during fed-batch cultivations with a high-yielding strain of Penicillium chrysogenum. Appl Microbiol Biotechnol 43:123–130CrossRefGoogle Scholar
  39. Kennedy J, Turner G (1996) Delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197CrossRefGoogle Scholar
  40. Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol 42:154–164CrossRefGoogle Scholar
  41. Kiel JA, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7:1291–1303CrossRefGoogle Scholar
  42. Kiel JA, van den Berg MA, Fusetti F, Poolman B, Bovenberg RA, Veenhuis M, van der Klei IJ (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9:167–184CrossRefGoogle Scholar
  43. Koetsier MJ, Jekel PA, van den Berg MA, Bovenberg RA, Janssen DB (2009) Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. Biochem J 417:467–476CrossRefGoogle Scholar
  44. Koetsier MJ, Gombert AK, Fekken S, Bovenberg RA, van den Berg MA, Kiel JA, Jekel PA, Janssen DB, Pronk JT, van der Klei IJ, Daran JM (2010) The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genet Biol 47:33–42CrossRefGoogle Scholar
  45. Koetsier MJ, Jekel PA, Wijma HJ, Bovenberg RA, Janssen DB (2011) Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum. FEBS Lett 585:893–898CrossRefGoogle Scholar
  46. Kopke K, Hoff B, Kück U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 76:4664–4674CrossRefGoogle Scholar
  47. Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275:2423–2430CrossRefGoogle Scholar
  48. Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225CrossRefGoogle Scholar
  49. Laich F, Fierro F, Cardoza RE, Martin JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240Google Scholar
  50. Laich F, Fierro F, Martín JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211–1219CrossRefGoogle Scholar
  51. Lamas-Maceiras M, Vaca I, Rodríguez E, Casqueiro J, Martín JF (2006) Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem J 395:147–155CrossRefGoogle Scholar
  52. Lein J (1986) The Panlabs penicillin strain improvement program. In: Z. Vanek and Z. Hostalek, Editors, Overproduction of microbial metabolites, Butterworths, Boston pp. 105–139.Google Scholar
  53. Lu Y, Mach RL, Affenzeller K, Kubicek CP (1992) Regulation of alpha-aminoadipate reductase from Penicillium chrysogenum in relation to the flux from alpha-aminoadipate into penicillin biosynthesis. Can J Microbiol 38:758–763CrossRefGoogle Scholar
  54. Machida M (2010) Genome organization of Koji molds and relation to industries. 11th International Symposium on the Genetics of Industrial Microorganisms, Melbourne, AustraliaGoogle Scholar
  55. Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M (2010) Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J Biosci Bioeng 110:8–11CrossRefGoogle Scholar
  56. Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek 75:21–31CrossRefGoogle Scholar
  57. Martín JF, Ullán RV, García-Estrada C (2010) Regulation and compartmentalization of β-lactam biosynthesis. Microb Biotechnol 3:285–299Google Scholar
  58. Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709CrossRefGoogle Scholar
  59. Müller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116:210–213Google Scholar
  60. Nasution U, van Gulik WM, Ras C, Proell A, Heijnen JJ (2008) A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metab Eng 10:10–23CrossRefGoogle Scholar
  61. Newbert RW, Barton B, Greaves P, Harper J, Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J Ind Microbiol Biotechnol 19:18–27CrossRefGoogle Scholar
  62. Nijland JG, Ebbendorf B, Woszczynska M, Boer R, Bovenberg RA, Driessen AJ (2010) Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum. Appl Environ Microbiol 76:7109–7115CrossRefGoogle Scholar
  63. Opaliński L, Kiel JA, Homan TG, Veenhuis M, van der Klei IJ (2010) Penicillium chrysogenum Pex14/17p–a novel component of the peroxisomal membrane that is important for penicillin production. FEBS J 277:3203–3218CrossRefGoogle Scholar
  64. Pócsi I, Molnár Z, Pusztahelyi T, Varecza Z, Emri T (2007) Yeast-like cell formation and glutathione metabolism in autolysing cultures of Penicillium chrysogenum. Acta Biol Hung 58:431–440CrossRefGoogle Scholar
  65. Rowlands RT (1991) Industrial strain improvement and the Panlabs penicillin club. In: Kleinkauf H, von Döhren H (eds) 50 years of penicillin applications: history and trends. Public, Czech Republic, pp 258–266Google Scholar
  66. Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environm Microbiol 77:3035–3043CrossRefGoogle Scholar
  67. Rodríguez-Sáiz M, Barredo JL, Moreno MA, Fernández-Cañón JM, Peñalva MA, Díez B (2001) Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol 183:5465–5471CrossRefGoogle Scholar
  68. Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106:466–472CrossRefGoogle Scholar
  69. Seifar RM, Zhao Z, van Dam J, van Winden W, van Gulik W, Heijnen JJ (2008) Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr A 1187:103–110CrossRefGoogle Scholar
  70. Seifar RM, Ras C, van Dam JC, van Gulik WM, Heijnen JJ, van Winden WA (2009) Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Anal Biochem 388:213–219CrossRefGoogle Scholar
  71. Shroff RA, Lockington RA, Kelly JM (1996) Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol 42:950–959CrossRefGoogle Scholar
  72. Shroff RA, O’Connor SM, Hynes MJ, Lockington RA, Kelly JM (1997) Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22:28–38CrossRefGoogle Scholar
  73. Shaaban M, Palmer JM, El-Naggar WA, El-Sokkary MA, Habib el-SE, Keller NP (2010) Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genet Biol 47:423–432CrossRefGoogle Scholar
  74. Sigl C, Haas H, Specht T, Pfaller K, Kürnsteiner H, Zadra I (2011) Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl Environ Microbiol 77:972–982CrossRefGoogle Scholar
  75. Simpson IN, Caten CE (1979) Recurrent mutation and selection for increased penicillin titre in Aspergillus nidulans. J Gen Microbiol 113:209–217Google Scholar
  76. Smidák R, Kralovicová M, Sevciková B, Jakubcová M, Kormanec J, Timko J, Turna J (2010a) Sequence analysis and gene amplification study of the penicillin biosynthesis gene cluster from different strains of Penicillium chrysogenum. Biologia 65:1e6CrossRefGoogle Scholar
  77. Smidák R, Jopcík M, Kralovicová M, Gajdosíková J, Kormanec J, Timko J, Turna J (2010b) Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum. Folia Microbiol (Praha) 55:126–132CrossRefGoogle Scholar
  78. Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497CrossRefGoogle Scholar
  79. Snoek IS, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RA, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426CrossRefGoogle Scholar
  80. Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA (2008) Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 70:445–461CrossRefGoogle Scholar
  81. Spröte P, Brakhage AA, Hynes MJ (2009) Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 8:421–423CrossRefGoogle Scholar
  82. Theilgaard HA, Nielsen J (1999) Metabolic control analysis of the penicillin biosynthetic pathway: the influence of the LLD-ACV:bisACV ratio on the flux control. Antonie Van Leeuwenhoek 75:145–154CrossRefGoogle Scholar
  83. Theilgaard H, van den Berg M, Mulder C, Bovenberg R, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72:379–388CrossRefGoogle Scholar
  84. Van den Berg MA (2010) Functional characterization of penicillin production strains. Fungal Biol Rev 24:73–78CrossRefGoogle Scholar
  85. Van den Berg MA, Bovenberg RAL, Driessen AJM, Konings WN Schuurs TA, Nieboer M, Westerlaken I (2001) Method forenhancing secretion of beta-lactam transport. WO2001/32904Google Scholar
  86. Van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RAL (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet Biol 44:830–844CrossRefGoogle Scholar
  87. Van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168CrossRefGoogle Scholar
  88. Van den Berg MA, Touw H, Van den Hoogen L, Gielesen B (2009) β-lactam producing strains. WO2009133098Google Scholar
  89. Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG (2007) Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun 360:453–458CrossRefGoogle Scholar
  90. Windhofer F, Hauck K, Catcheside DE, Kück U, Kempken F (2002) Ds-like restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genet Biol 35:171–182CrossRefGoogle Scholar
  91. Woo PC, Tam EW, Chong KT, Cai JJ, Tung ET, Ngan AH, Lau SK, Yuen KY (2010) High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J 277:3750–3758CrossRefGoogle Scholar
  92. Zhao Z, Kuijvenhoven K, van Gulik WM, Heijnen JJ, van Winden WA, Verheijen PJ (2011) Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol. Appl Microbiol Biotechnol 89:63–72CrossRefGoogle Scholar
  93. Zhu HY, Tian Y, Hou YH, Wang TH (2009) Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol Biol Rep 36:2169–2174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.DSM Biotechnology Center (699-0310)DelftThe Netherlands

Personalised recommendations