Skip to main content

Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core

Abstract

Violacein is a natural violet pigment produced by several Gram-negative bacteria, including Chromobacterium violaceum, Janthinobacterium lividum, and Pseudoalteromonas tunicata D2, among others. This pigment has potential medical applications as antibacterial, anti-trypanocidal, anti-ulcerogenic, and anticancer drugs. The structure of violacein consists of three units: a 5-hydroxyindole, an oxindole, and a 2-pyrrolidone. The biosynthetic origins of hydrogen, nitrogen, and carbon in the pyrrolidone nucleus were established by feeding experiments using various stable isotopically labeled tryptophans (Trps). Pro-S hydrogen of CH2 at the 3-position of Trp is retained during biosynthesis. The nitrogen atom is exclusively from the α-amino group, and the skeletal carbon atoms originate from the side chains of the two Trp molecules. All three oxygen atoms in the violacein core are derived from molecular oxygen. The most interesting biosynthetic mechanism is the 1,2-shift of the indole nucleus on the left side of the violacein scaffold. The alternative Trp molecule is directly incorporated into the right side of the violacein core. This indole shift has been observed only in violacein biosynthesis, despite the large number of natural products having been isolated. There were remarkable advances in biosynthetic studies in 2006–2008. During the 3 years, most of the intermediates and the complete pathway were established. Two independent processes are involved: the enzymatic process catalyzed by the five proteins VioABCDE or the alternative nonenzymatic oxidative decarboxylation reactions. The X-ray crystallographic structure of VioE that mediates the indole rearrangement reaction was recently identified, and the mechanism of the indole shift is discussed here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simoes CM (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:843–848

    Article  PubMed  Google Scholar 

  • Antonisamy P, Ignacimuthu S (2010) Immunomodulatory, analgestic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17:300–304

    CAS  PubMed  Article  Google Scholar 

  • Aranda S, Montes-Borrego M, Landa BB (2011) Purple-pigmented violacein-producing Duganella spp. inhabit the rhizosphere of wild and cultivated olives in southern Spain. Microbiol Ecol. doi:https://doi.org/10.1007/s00248-011-9840-9

    CAS  PubMed  Article  Google Scholar 

  • Asamizu S, Kato Y, Igarashi Y, Onaka H (2007) VioE, a prodeoxyviolacein synthase involved in violacein biosynthesis, is responsible for intramolecular indole rearrangement. Tetrahedron Lett 48:2923–2926

    CAS  Article  Google Scholar 

  • August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2:513–519

    CAS  PubMed  Google Scholar 

  • Balibar CJ, Walsh CT (2006) In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA–E from Chromobacterium violaceum. Biochemistry 45:15444–15457

    CAS  Article  PubMed  Google Scholar 

  • Ballantine JA, Barrett CB, Beer RJS, Eardley S, Robertson A, Shaw BL, Simpson TH (1958) The chemistry of bacteria. Part VII. The structure of violacein. J Chem Soc 1958:755–760

    Article  Google Scholar 

  • Ballantine JA, Beer RJS, Crutchley DJ, Dodd GM, Palmer DR (1960) The chemistry of bacteria. Part VIII. The synthesis of violacein and related compounds. J Chem Soc 1960:2292–2299

    Article  Google Scholar 

  • Boisbaudran LD (1882) Matiere colarante se formant dans la cole de farine. Compt Rend 94:562

    Google Scholar 

  • Brazilian National Genome Project Consortium (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Prod Natl Acad Sci U S A 100:11660–11665

    Article  CAS  Google Scholar 

  • Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, Just GZ (2010) Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 186:43–52

    CAS  PubMed  Article  Google Scholar 

  • Cheah E, MacPherson K, Quiggin D, Keese P, Ollis DL (1998) Crystallization and preliminary X-ray analysis of IND, an enzyme with indole oxygenase activity from Chromobacterium violaceum. Acta Crystallogr D54:657–658

    CAS  Google Scholar 

  • Contractor SF, Sandler M, Wragg J (1964) 6-hydroxytryptophan formation by Chromobacterium violaceum. Life Sci 3:999–1006

    CAS  Article  Google Scholar 

  • Davis PJ, Gustafson ME, Rosazza JP (1976) Formation of indole-3-carboxylic acid by Chromobacterium violaceum. J Bacteriol 126:544–546

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • deCarvalho DD, Costa FTM, Durán N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol Vitro 20:1514–1521

    CAS  Article  Google Scholar 

  • DeMoss RD (1967) In: Gottlieb D, Shaw P (eds) Mechanism of actions and biosynthesis of antibiotics. Springer, New York, pp 77–81

    Google Scholar 

  • DeMoss RD, Evans NR (1957) l-Tryptophan metabolism in Chromobacterium violaceum. Bacteriol Proc. 117

  • DeMoss RD, Evans NR (1960) Incorporation of C14-labeled substrates into violacein. J Bacteriol 79:729–733

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Durán N, Menck CFM (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222

    Article  PubMed  Google Scholar 

  • Durán N, Erazo S, Campos V (1983) Bacterial chemistry-II: antimicrobial photoproduct from pigment of Chromobacterium violaceum. An Acad Bras Cienc 55:231–234

    Google Scholar 

  • Durán N, Antonio RV, Haun M, Pilli RA (1994) Biosynhtesis of a trypanocide by Chromobacterium violaceum. World J Microbiol Biotechnol 10:686–690

    PubMed  Article  Google Scholar 

  • Durán N, Just GZ, Melo PS, De Azevedo MBM, Sauza Brito ARM, Almeida ABA, Haun M (2003) Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with β-cyclodextrin. Can J Physiol Pharmacol 81:387–396

    PubMed  Article  Google Scholar 

  • Ferreira CV, Bos CL, Versteeg HH, Just GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanisms of violacein-mediated human leukemia cell death. Blood 104:1459–1464

    CAS  PubMed  Article  Google Scholar 

  • Genet R, Denoyelle C, Ménez A (1994) Purification and partial characterization of an amino acid α, β-dehydrogenase, l-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. J Biol Chem 269:18177–18184

    CAS  PubMed  Google Scholar 

  • Hagmann M, Grisebach H (1984) Enzymatic rearrangement of flavanone to isoflavone. FEBS Lett 175:199–202

    CAS  Article  Google Scholar 

  • Hakvåg S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen KD, Ellingsen TE, Zotchev SB (2009) Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trøndelag, Norway. Mar Drugs 7:576–588

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U (1990) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett 271:219–222

    CAS  PubMed  Article  Google Scholar 

  • Hirano S, Asamizu S, Onaka H, Shiro Y, Nagano S (2008) Crystal structure of VioE, a key player in the construction of the molecular skeleton of violacein. J Biol Chem 283:6459–6466

    CAS  Article  PubMed  Google Scholar 

  • Hoshino T, Ogasawara N (1990) Biosynthesis of violacein: evidence for the intermediacy of 5-hydroxy-l-tryptophan and the structure of a new pigment, oxyviolacein, produced by the metabolism of 5-hydroxytryptophan. Agric Biol Chem 54:2339–2346

    CAS  Google Scholar 

  • Hoshino T, Yamamoto M (1997) Conversion from tryptophan precursor into violacein pigments by a cell-free system from Chromobacterium violaceum. Biosci Biotechnol Biochem 61:2134–2136

    CAS  PubMed  Article  Google Scholar 

  • Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987a) Biosynthesis of violacein: a novel rearrangement in tryptophan metabolism with a 1,2-shift of the indole ring. Agric Biol Chem 51:965–968

    CAS  Google Scholar 

  • Hoshino T, Takano T, Hori S, Ogasawara N (1987b) Biosynthesis of violacein: origins of hydrogen, nitrogen and oxygen atoms in the 2-pyrrolidone nucleus. Agric Biol Chem 51:2733–2741

    CAS  Google Scholar 

  • Hoshino T, Yamamoto M, Uchiyama T (1993a) Formations of (5-hydroxy)indole S-(−)-lactic acid, N-acetyl-5-hydroxy-l-tryptophan, and (5-hydroxy)indole carboxylic acid in the metabolism of tryptophan and 5-hydroxytryptophan by Chromobacterium violaceum. Biosci Biotechnol Biochem 57:1609–1610

    CAS  Article  Google Scholar 

  • Hoshino T, Kojima Y, Hayashi T, Uchiyama T, Kaneko K (1993b) A new metabolite of tryptophan, chromopyrrolic acid, produced by Chromobacterium violaceum. Biosci Biotechnol Biochem 57:775–781

    CAS  Article  Google Scholar 

  • Hoshino T, Hayashi T, Uchiyama T (1994a) Pseudodeoxyviolacein, a new red pigment produced by the tryptophan metabolism of Chromobacterium violaceum. Biosci Biotechnol Biochem 58:279–282

    CAS  Article  Google Scholar 

  • Hoshino T, Kimura K, Takahashi H, Uchiyama T, Yoshihama M (1994b) A physiologically active bisindole-pyrrole derivative. Eur. Patent EP 0 612 742 A1, U.S. Patent 5,428,175

  • Hoshino T, Hayashi T, Odajima T (1995) Biosynthesis of violacein: oxygenation at the 2-position of the indole ring and structures of proviolacein, prodeoxyviolacein and pseudoviolacein, the plausible biosynthetic intermediates of violacein and deoyviolacein. J Chem Soc Perkin Trans 1(1995):1565–1571

    Article  Google Scholar 

  • Howard-Jones AR, Walsh CT (2005) Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry 44:15652–15663

    CAS  PubMed  Article  Google Scholar 

  • Jiang P-X, Wang H-S, Zhang C, Lou K, Xing X-H (2010) Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol 86:1077–1088

    CAS  Article  PubMed  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    CAS  PubMed  Article  Google Scholar 

  • Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508–516

    CAS  PubMed  Article  Google Scholar 

  • Konzen M, De Marco D, Cordova CAS, Vieira TO, Antônio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14:8307–8313

    CAS  PubMed  Article  Google Scholar 

  • Leon LL, Miranda CC, De Soua AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449–450

    CAS  Article  PubMed  Google Scholar 

  • Letendre CH, Dickens G, Guroff G (1974) The tryptophan hydroxylase of Chrmobacterium violaceum. J Biol Chem 249:7186–7191

    CAS  PubMed  Google Scholar 

  • Lichstein HC, Van de Sand VF (1945) Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J Infect Dis 76:47–51

    CAS  Article  Google Scholar 

  • MaClean KH, Fish MKL, Yaylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycrof BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Ebert L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Melo PS, Just GZ, de Azevedo MBM, Durán N, Haun M (2003) Violacein and its β-cyclodextrin complexes induces apoptosis and differentiation in HL60 cells. Toxicology 186:217–225

    CAS  PubMed  Article  Google Scholar 

  • Mitoma C, Weissbach H, Udenfriend S (1955) Formation of 5-hydroxytryptophan from tryptophan by Chromobacterium violaceum. Nature 175:994–995

    CAS  PubMed  Article  Google Scholar 

  • Mizuoka T, Toume K, Ishibashi M, Hoshino T (2010) Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implication and the biological activity of chromoazepinone A and B. Org Biomol Chem 8:3157–3163

    CAS  PubMed  Article  Google Scholar 

  • Momen AZMR, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side. Biosci Biotechnol Biochem 64:539–549

    CAS  Article  PubMed  Google Scholar 

  • Momen AZMR, Mizuoka T, Hoshino T (1998) Studies on the biosynthesis of violacein. Part 9. Green pigments possessing tetraindole and dipyrromethne moieties, chromoviridans and deoxychromoviridans, produced by a cell-free extract of Chromobacterium violaceum and their biosynthetic origins. J Chem Soc Perkin Trans 1(1998):3087–3092

    Article  Google Scholar 

  • Moreau P, Anizon F, Sancelme M, Prudhomme M, Bailly C, Severe D, Riou J-F, Fabbro D, Meyer T, Aubertin A-M (1999) Syntheses and biological activities of rebeccamycin analogues. Introduction of a halogenoacetyl substituent. J Med Chem 42:584–592

    CAS  PubMed  Article  Google Scholar 

  • Morohoshi T, Fukamachi K, Kato M, Kato N, Ikeda T (2010) Regulation of the violacein gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC12472. Biosci Biotechnol Biochem 74:2116–2119

    CAS  Article  PubMed  Google Scholar 

  • Nakamura Y, Asada C, Sawada T (2003) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol Bioproc Eng 8:37–40

    CAS  Article  Google Scholar 

  • Onaka H, Taniguchi S, Igarashi Y, Furumai T (2003) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138

    CAS  PubMed  Article  Google Scholar 

  • Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102:992–999

    CAS  PubMed  Google Scholar 

  • Pemberton JM, Vincent KM, Penfold RJ (1991) Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum. Curr Microbiol 22:355–358

    CAS  Article  Google Scholar 

  • Ryan KS, Drennan CL (2009) Divergent pathways in the biosynthesis of bisindole natural products. Chem Biol 16:351–364

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ryan KS, Balibar CJ, Turo KE, Walsh CT, Drennan C (2008) The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J Biol Chem 283:6467–6475

    CAS  PubMed  Article  Google Scholar 

  • Salas JA, Méndez C (2009) Indolocarbazole antitumor compounds by combinatorial biosynthesis. Curr Opin Chem Biol 13:152–160

    CAS  PubMed  Article  Google Scholar 

  • Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

    PubMed  Article  Google Scholar 

  • Sánchez C, Zhu L, Braña AF, Salas AP, Rohr J, Méndez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci 102:461–466

    PubMed  Article  CAS  Google Scholar 

  • Sánchez C, Braña AF, Méndez C, Salas JA (2006) Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem 7:1231–1240

    PubMed  Article  CAS  Google Scholar 

  • Sebek OK, Jäger H (1962) Divergent pathways of indole metabolism in Chromobacterium violaceum. Nature 196:793–795

    CAS  PubMed  Article  Google Scholar 

  • Shinoda K, Hasegawa T, Sato H, Shinozaki M, Kuramoto H, Takamiya Y, Satot T, Nikaidou N, Watanabe T, Hoshino T (2007) Biosynthesis of violacein: a genuine intermediate, protoviolaceinic acid, produced by VioABDE, and insight into VioC function. Chem Comm (Camb) 2007:4140–4142

    Article  CAS  Google Scholar 

  • Steglich W, Steffan B, Kopanski L, Eckhardt G (1980) Indole pigments from the fruiting bodies of the slime mold Arcyria denudata. Angew Chem Int Ed Engl 19:459–460

    Article  Google Scholar 

  • Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporin, a potent inhibitor of phopholilpid/Ca2+ dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    CAS  PubMed  Article  Google Scholar 

  • Walsh CT, Garneau-Tsodikova S, Howard-Jones AR (2006) Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat Prod Rep 23:517–531

    CAS  PubMed  Article  Google Scholar 

  • Yada S, Wang Y, Zou Y, Nagasaki K, Osaka I, Arakawa R, Enomoto K (2008) Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol 10:128–132

    CAS  Article  Google Scholar 

  • Yang LH, Xiong H, Lee OO, Qi SH, Qian PY (2007) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgment

I thank the young scientists and students in our research group who made a large contribution to this research; their names are included in the literatures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Hoshino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoshino, T. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91, 1463–1475 (2011). https://doi.org/10.1007/s00253-011-3468-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3468-z

Keywords

  • Violacein
  • Bisindole
  • Chromobacterium violaceum
  • VioABCDE
  • Indole shift