Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simoes CM (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:843–848
Article
PubMed
Google Scholar
Antonisamy P, Ignacimuthu S (2010) Immunomodulatory, analgestic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17:300–304
CAS
PubMed
Article
Google Scholar
Aranda S, Montes-Borrego M, Landa BB (2011) Purple-pigmented violacein-producing Duganella spp. inhabit the rhizosphere of wild and cultivated olives in southern Spain. Microbiol Ecol. doi:https://doi.org/10.1007/s00248-011-9840-9
CAS
PubMed
Article
Google Scholar
Asamizu S, Kato Y, Igarashi Y, Onaka H (2007) VioE, a prodeoxyviolacein synthase involved in violacein biosynthesis, is responsible for intramolecular indole rearrangement. Tetrahedron Lett 48:2923–2926
CAS
Article
Google Scholar
August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2:513–519
CAS
PubMed
Google Scholar
Balibar CJ, Walsh CT (2006) In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA–E from Chromobacterium violaceum. Biochemistry 45:15444–15457
CAS
Article
PubMed
Google Scholar
Ballantine JA, Barrett CB, Beer RJS, Eardley S, Robertson A, Shaw BL, Simpson TH (1958) The chemistry of bacteria. Part VII. The structure of violacein. J Chem Soc 1958:755–760
Article
Google Scholar
Ballantine JA, Beer RJS, Crutchley DJ, Dodd GM, Palmer DR (1960) The chemistry of bacteria. Part VIII. The synthesis of violacein and related compounds. J Chem Soc 1960:2292–2299
Article
Google Scholar
Boisbaudran LD (1882) Matiere colarante se formant dans la cole de farine. Compt Rend 94:562
Google Scholar
Brazilian National Genome Project Consortium (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Prod Natl Acad Sci U S A 100:11660–11665
Article
CAS
Google Scholar
Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, Just GZ (2010) Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 186:43–52
CAS
PubMed
Article
Google Scholar
Cheah E, MacPherson K, Quiggin D, Keese P, Ollis DL (1998) Crystallization and preliminary X-ray analysis of IND, an enzyme with indole oxygenase activity from Chromobacterium violaceum. Acta Crystallogr D54:657–658
CAS
Google Scholar
Contractor SF, Sandler M, Wragg J (1964) 6-hydroxytryptophan formation by Chromobacterium violaceum. Life Sci 3:999–1006
CAS
Article
Google Scholar
Davis PJ, Gustafson ME, Rosazza JP (1976) Formation of indole-3-carboxylic acid by Chromobacterium violaceum. J Bacteriol 126:544–546
CAS
PubMed
PubMed Central
Article
Google Scholar
deCarvalho DD, Costa FTM, Durán N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol Vitro 20:1514–1521
CAS
Article
Google Scholar
DeMoss RD (1967) In: Gottlieb D, Shaw P (eds) Mechanism of actions and biosynthesis of antibiotics. Springer, New York, pp 77–81
Google Scholar
DeMoss RD, Evans NR (1957) l-Tryptophan metabolism in Chromobacterium violaceum. Bacteriol Proc. 117
DeMoss RD, Evans NR (1960) Incorporation of C14-labeled substrates into violacein. J Bacteriol 79:729–733
CAS
PubMed
PubMed Central
Article
Google Scholar
Durán N, Menck CFM (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222
Article
PubMed
Google Scholar
Durán N, Erazo S, Campos V (1983) Bacterial chemistry-II: antimicrobial photoproduct from pigment of Chromobacterium violaceum. An Acad Bras Cienc 55:231–234
Google Scholar
Durán N, Antonio RV, Haun M, Pilli RA (1994) Biosynhtesis of a trypanocide by Chromobacterium violaceum. World J Microbiol Biotechnol 10:686–690
PubMed
Article
Google Scholar
Durán N, Just GZ, Melo PS, De Azevedo MBM, Sauza Brito ARM, Almeida ABA, Haun M (2003) Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with β-cyclodextrin. Can J Physiol Pharmacol 81:387–396
PubMed
Article
Google Scholar
Ferreira CV, Bos CL, Versteeg HH, Just GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanisms of violacein-mediated human leukemia cell death. Blood 104:1459–1464
CAS
PubMed
Article
Google Scholar
Genet R, Denoyelle C, Ménez A (1994) Purification and partial characterization of an amino acid α, β-dehydrogenase, l-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. J Biol Chem 269:18177–18184
CAS
PubMed
Google Scholar
Hagmann M, Grisebach H (1984) Enzymatic rearrangement of flavanone to isoflavone. FEBS Lett 175:199–202
CAS
Article
Google Scholar
Hakvåg S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen KD, Ellingsen TE, Zotchev SB (2009) Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trøndelag, Norway. Mar Drugs 7:576–588
PubMed
PubMed Central
Article
CAS
Google Scholar
Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U (1990) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett 271:219–222
CAS
PubMed
Article
Google Scholar
Hirano S, Asamizu S, Onaka H, Shiro Y, Nagano S (2008) Crystal structure of VioE, a key player in the construction of the molecular skeleton of violacein. J Biol Chem 283:6459–6466
CAS
Article
PubMed
Google Scholar
Hoshino T, Ogasawara N (1990) Biosynthesis of violacein: evidence for the intermediacy of 5-hydroxy-l-tryptophan and the structure of a new pigment, oxyviolacein, produced by the metabolism of 5-hydroxytryptophan. Agric Biol Chem 54:2339–2346
CAS
Google Scholar
Hoshino T, Yamamoto M (1997) Conversion from tryptophan precursor into violacein pigments by a cell-free system from Chromobacterium violaceum. Biosci Biotechnol Biochem 61:2134–2136
CAS
PubMed
Article
Google Scholar
Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987a) Biosynthesis of violacein: a novel rearrangement in tryptophan metabolism with a 1,2-shift of the indole ring. Agric Biol Chem 51:965–968
CAS
Google Scholar
Hoshino T, Takano T, Hori S, Ogasawara N (1987b) Biosynthesis of violacein: origins of hydrogen, nitrogen and oxygen atoms in the 2-pyrrolidone nucleus. Agric Biol Chem 51:2733–2741
CAS
Google Scholar
Hoshino T, Yamamoto M, Uchiyama T (1993a) Formations of (5-hydroxy)indole S-(−)-lactic acid, N-acetyl-5-hydroxy-l-tryptophan, and (5-hydroxy)indole carboxylic acid in the metabolism of tryptophan and 5-hydroxytryptophan by Chromobacterium violaceum. Biosci Biotechnol Biochem 57:1609–1610
CAS
Article
Google Scholar
Hoshino T, Kojima Y, Hayashi T, Uchiyama T, Kaneko K (1993b) A new metabolite of tryptophan, chromopyrrolic acid, produced by Chromobacterium violaceum. Biosci Biotechnol Biochem 57:775–781
CAS
Article
Google Scholar
Hoshino T, Hayashi T, Uchiyama T (1994a) Pseudodeoxyviolacein, a new red pigment produced by the tryptophan metabolism of Chromobacterium violaceum. Biosci Biotechnol Biochem 58:279–282
CAS
Article
Google Scholar
Hoshino T, Kimura K, Takahashi H, Uchiyama T, Yoshihama M (1994b) A physiologically active bisindole-pyrrole derivative. Eur. Patent EP 0 612 742 A1, U.S. Patent 5,428,175
Hoshino T, Hayashi T, Odajima T (1995) Biosynthesis of violacein: oxygenation at the 2-position of the indole ring and structures of proviolacein, prodeoxyviolacein and pseudoviolacein, the plausible biosynthetic intermediates of violacein and deoyviolacein. J Chem Soc Perkin Trans 1(1995):1565–1571
Article
Google Scholar
Howard-Jones AR, Walsh CT (2005) Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry 44:15652–15663
CAS
PubMed
Article
Google Scholar
Jiang P-X, Wang H-S, Zhang C, Lou K, Xing X-H (2010) Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol 86:1077–1088
CAS
Article
PubMed
Google Scholar
Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8:387–398
CAS
PubMed
Article
Google Scholar
Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508–516
CAS
PubMed
Article
Google Scholar
Konzen M, De Marco D, Cordova CAS, Vieira TO, Antônio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14:8307–8313
CAS
PubMed
Article
Google Scholar
Leon LL, Miranda CC, De Soua AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449–450
CAS
Article
PubMed
Google Scholar
Letendre CH, Dickens G, Guroff G (1974) The tryptophan hydroxylase of Chrmobacterium violaceum. J Biol Chem 249:7186–7191
CAS
PubMed
Google Scholar
Lichstein HC, Van de Sand VF (1945) Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J Infect Dis 76:47–51
CAS
Article
Google Scholar
MaClean KH, Fish MKL, Yaylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycrof BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711
Article
Google Scholar
Matz C, Deines P, Boenigk J, Arndt H, Ebert L, Kjelleberg S, Jürgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599
CAS
PubMed
PubMed Central
Article
Google Scholar
Melo PS, Just GZ, de Azevedo MBM, Durán N, Haun M (2003) Violacein and its β-cyclodextrin complexes induces apoptosis and differentiation in HL60 cells. Toxicology 186:217–225
CAS
PubMed
Article
Google Scholar
Mitoma C, Weissbach H, Udenfriend S (1955) Formation of 5-hydroxytryptophan from tryptophan by Chromobacterium violaceum. Nature 175:994–995
CAS
PubMed
Article
Google Scholar
Mizuoka T, Toume K, Ishibashi M, Hoshino T (2010) Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implication and the biological activity of chromoazepinone A and B. Org Biomol Chem 8:3157–3163
CAS
PubMed
Article
Google Scholar
Momen AZMR, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side. Biosci Biotechnol Biochem 64:539–549
CAS
Article
PubMed
Google Scholar
Momen AZMR, Mizuoka T, Hoshino T (1998) Studies on the biosynthesis of violacein. Part 9. Green pigments possessing tetraindole and dipyrromethne moieties, chromoviridans and deoxychromoviridans, produced by a cell-free extract of Chromobacterium violaceum and their biosynthetic origins. J Chem Soc Perkin Trans 1(1998):3087–3092
Article
Google Scholar
Moreau P, Anizon F, Sancelme M, Prudhomme M, Bailly C, Severe D, Riou J-F, Fabbro D, Meyer T, Aubertin A-M (1999) Syntheses and biological activities of rebeccamycin analogues. Introduction of a halogenoacetyl substituent. J Med Chem 42:584–592
CAS
PubMed
Article
Google Scholar
Morohoshi T, Fukamachi K, Kato M, Kato N, Ikeda T (2010) Regulation of the violacein gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC12472. Biosci Biotechnol Biochem 74:2116–2119
CAS
Article
PubMed
Google Scholar
Nakamura Y, Asada C, Sawada T (2003) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol Bioproc Eng 8:37–40
CAS
Article
Google Scholar
Onaka H, Taniguchi S, Igarashi Y, Furumai T (2003) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138
CAS
PubMed
Article
Google Scholar
Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102:992–999
CAS
PubMed
Google Scholar
Pemberton JM, Vincent KM, Penfold RJ (1991) Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum. Curr Microbiol 22:355–358
CAS
Article
Google Scholar
Ryan KS, Drennan CL (2009) Divergent pathways in the biosynthesis of bisindole natural products. Chem Biol 16:351–364
CAS
PubMed
PubMed Central
Article
Google Scholar
Ryan KS, Balibar CJ, Turo KE, Walsh CT, Drennan C (2008) The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J Biol Chem 283:6467–6475
CAS
PubMed
Article
Google Scholar
Salas JA, Méndez C (2009) Indolocarbazole antitumor compounds by combinatorial biosynthesis. Curr Opin Chem Biol 13:152–160
CAS
PubMed
Article
Google Scholar
Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531
PubMed
Article
Google Scholar
Sánchez C, Zhu L, Braña AF, Salas AP, Rohr J, Méndez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci 102:461–466
PubMed
Article
CAS
Google Scholar
Sánchez C, Braña AF, Méndez C, Salas JA (2006) Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem 7:1231–1240
PubMed
Article
CAS
Google Scholar
Sebek OK, Jäger H (1962) Divergent pathways of indole metabolism in Chromobacterium violaceum. Nature 196:793–795
CAS
PubMed
Article
Google Scholar
Shinoda K, Hasegawa T, Sato H, Shinozaki M, Kuramoto H, Takamiya Y, Satot T, Nikaidou N, Watanabe T, Hoshino T (2007) Biosynthesis of violacein: a genuine intermediate, protoviolaceinic acid, produced by VioABDE, and insight into VioC function. Chem Comm (Camb) 2007:4140–4142
Article
CAS
Google Scholar
Steglich W, Steffan B, Kopanski L, Eckhardt G (1980) Indole pigments from the fruiting bodies of the slime mold Arcyria denudata. Angew Chem Int Ed Engl 19:459–460
Article
Google Scholar
Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporin, a potent inhibitor of phopholilpid/Ca2+ dependent protein kinase. Biochem Biophys Res Commun 135:397–402
CAS
PubMed
Article
Google Scholar
Walsh CT, Garneau-Tsodikova S, Howard-Jones AR (2006) Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat Prod Rep 23:517–531
CAS
PubMed
Article
Google Scholar
Yada S, Wang Y, Zou Y, Nagasaki K, Osaka I, Arakawa R, Enomoto K (2008) Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol 10:128–132
CAS
Article
Google Scholar
Yang LH, Xiong H, Lee OO, Qi SH, Qian PY (2007) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630
CAS
PubMed
Article
Google Scholar