Skip to main content

Impact of sulphate-reducing bacteria on the performance of engineering materials

Abstract

Microbiologically Influenced Corrosion (MIC) is an electrochemical corrosion influenced by the presence/action of biological agents such as, but not limited to, bacteria. One of the key elements of MIC is sulphate-reducing bacteria (SRB). There are still many misunderstandings about these bacteria, their role in the deterioration of engineering materials and their importance over other types of corrosion-related micro-/macro-organisms. SRB do not require oxygen, yet they can be found in oxygenated environments; they are capable of tolerating a relative wide range of temperature, pH, chloride concentration and pressure values. Not only can SRB have deteriorating impact on engineering materials, they are also capable of inducing harm to health and agriculture. In this paper, after reviewing facts and figures regarding ecological and economical impacts of corrosion in general and MIC, in particular, the central concept of MIC, that is, biofilm formation and its deterioration mechanisms and the role of SRB in such mechanisms are described. Also, the possible enhancing role of SRB on stress corrosion cracking of steels and the controversial concept of no relationship between the number of SRB and corrosion rate are addressed and reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Barton LL, Tomei FA (1995) Characteristics and activities of sulfate-reducing bacteria in sulfate-reducing bacteria. In: Barton LL (ed) Biotechnology handbooks, vol 8. Plenum Press, New York

    Google Scholar 

  2. Beech IB (2003) Sulfate-reducing bacteria in biofilms on metallic material and corrosion. Microbiol Today 30:115–117

    Google Scholar 

  3. Beech I, Bergel A, Mollica A, Flemming HC, Scotto V, Sand W (2000) Simple methods for the investigation of the role of biofilms in corrosion. Brite Euram Thematic Network on MIC of Industrial Materials, Task Group1, Biofilm Fundamentals, Brite Euram Thematic Network No. ERB BRRT-CT98-5084

  4. Bryant RD, Jansen W, Boivin J, Laishley EJ, Costerton JW (1991) Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl Environ Microbiol 57(10):2804–2809

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Castro HF, Norris HW, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng S, Enhou H (2005) Effects of SRB on corrosion of Q235 steel during evaporation of water in soil. J Chin Soc Corrosion Protect 25(5):307–311

    Google Scholar 

  7. Cord-Ruwisch R (1996) MIC in hydrocarbon transportation systems. Corr Aus 21(1):8–12

    CAS  Google Scholar 

  8. Critchley M, Javaherdashti R (2004) Metals, microbes and MIC—a review of microbiologically influenced corrosion. Proc. of Corrosion and Prevention 2004 (CAP04), Perth, Australia

  9. de Romero M, Duque Z, de Rincon O, Perez O, Araujo I, Martinez A (2000) Online Monitoring systems of microbiologically influenced corrosion on Cu-10% Ni alloy in chlorinated, brackish water. Corrosion 55(8):867–876

    Article  Google Scholar 

  10. de Romero MF, Urdaneta S, Barrientos M, Romero G (2004) Correlation between desulfovibrio sessile growth and OCP, hydrogen permeation, corrosion products and morphological attack on iron. Paper No.04576, CORROSION 2004, National Association of Corrosion Engineers International, USA

  11. Dexter SC, Chandrasekaran P (2000) Direct measurement of pH within marine biofilms on passive metals. Biofouling 15(4):313–325

    CAS  Article  Google Scholar 

  12. El-Meligi AA (2010) Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics. Re Pat Corr Sci 2:22–33

    CAS  Article  Google Scholar 

  13. Enos DG, Taylor SR (1996) Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments. Corrosion 52(1):831–842

    CAS  Article  Google Scholar 

  14. Flemming HC (1996) In: Heitz E, Flemming HC, Sand W (eds) Economical and technical overview in microbially influenced corrosion of materials. Springer, Berlin

    Google Scholar 

  15. Fontana MC (1987) Corrosion engineering, 3rd edn. McGraw Hill International Editions, USA

    Google Scholar 

  16. Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Hang DT (2003) Microbiological study of the anaerobic corrosion of iron. PhD Dissertation, University of Bremen, Bremen, Germany

  18. Hardy JA, Brown JL (1984) The corrosion of mild steel by biogenic sulfide films exposed to air. Corrosion 40(12):650–654

    CAS  Article  Google Scholar 

  19. Heitz E (1992) In: Heitz H, Mercer AD, Sand W, Tiller AK (eds) A working party report on microbiological degradation of materials and methods of protection. The Institute of Materials, England

    Google Scholar 

  20. Ilhan-Sungur E, Çotuk A (2010) Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corrosion Sci 52:161–171

    CAS  Article  Google Scholar 

  21. Ilhan-sungur E, Cansever N, Cotuk A (2007) Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corrosion Sci 49(3):1097–1109

    CAS  Article  Google Scholar 

  22. İlhan Sungur E, Türetgen İ, Javaherdashti R, Çotuk A (2010) Monitoring and disinfection of biofilm-associated sulfate reducing bacteria on different substrata in a simulated recirculating cooling tower system. Turk J Biol 34:389–397

    Google Scholar 

  23. Ito K, Matsuhashi R, Kato T, Miki O, Kihira H, Watanabe K, Baker P (2002) Potential ennoblement of stainless steel by Marine Biofilm and Microbial Consortia Analysis. Paper 02452, Corrosion 2002, National Association of Corrosion Engineers International, USA

  24. Iverson WP (1998) Possible source of a phosphorus compound produced by sulfate-reducing bacteria that cause anaerobic corrosion of iron. Mater Perform 37(5):46–49

    CAS  Google Scholar 

  25. Jack RF, Ringelberg DB, White DC (1992) Differential corrosion rates of carbon steel by combination s of a Bacillus sp. Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm. Corrosion Sci 33(12):1843–1853

    CAS  Article  Google Scholar 

  26. Javaherdashti R (1999) A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future. Anti-Corros Meth Mater 46(3):173–180

    CAS  Article  Google Scholar 

  27. Javaherdashti R (2000) How corrosion affects industry and life. Anti-Corros Meth Mater 47(1):30–34

    Article  Google Scholar 

  28. Javaherdashti R (2007) Making sense out of chaos: general patterns of MIC of carbon steel and biodegradation of concrete. Paper 016, Presented at Australasian Corrosion Association, ACA 2007, Hobart, Tasmania, Australia

  29. Javaherdashti R (2008) Microbiologically influenced corrosion—an engineering insight. Springer, UK

    Google Scholar 

  30. Javaherdashti R (2010) MIC and cracking of mild and stainless steels. VDM Publishing, Germany

    Google Scholar 

  31. Javaherdashti R, Nikraz H (2010) A global warning on corrosions and environment: a new look at existing technical and managerial strategies and tactics. VDM Germany

  32. Javaherdashti R, Raman Singh RK (2001) Microbiologically influenced corrosion of stainless steels in marine environments: a materials engineering approach. In: Proc. of Engineering Materials 2001. The Institute of Materials Engineering, Australia

  33. Javaherdashti R, Setareh M (2006) Evaluation of sessile microorganisms in pipelines and cooling towers of some Iranian industries. J Mater Eng Perform 15(1):5–8

    Article  CAS  Google Scholar 

  34. Javaherdashti R, Raman Singh RK, Panter C, Pereloma EVP (2004) Stress corrosion cracking of duplex stainless steel in mixed marine cultures containing sulphate reducing bacteria. Proc. of Corrosion and Prevention 2004 (CAP04), Perth, Australia

  35. Javaherdashti R, Raman Singh RK, Panter C, Pereloma EVP (2005) Role of microbiological environment in chloride stress corrosion cracking of steels. Mater Sci Tech 21(9):1094–1098

    Article  CAS  Google Scholar 

  36. Javaherdashti R, Raman Singh RK, Panter C, Pereloma EVP (2006) Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria. Int Biodet Biodeg 58(1):27–35

    CAS  Article  Google Scholar 

  37. Johnsen R, Bardal E (1985) Cathodic properties of different stainless steels in natural seawater. Corrosion 41(5):296–302

    CAS  Article  Google Scholar 

  38. King RA (2007) Trends and developments in microbiologically induced corrosion in the oil and gas industry. In: “MIC—an international perspective” Symposium, Extrin Corrosion Consultants-Curtin University, Perth-Australia

  39. Kovach CW, Redmond JD (1997) High performance stainless steels and microbiologically influenced corrosion, www.avestasheffield.com, acom 1–1997

  40. Kuang F, Wang J, Yan L, Zhang D (2007) Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochim Acta 53:6084–6088

    Article  CAS  Google Scholar 

  41. Landoulsi J, Pulvin S, Richard C, Sabot K (2006) Biocorrosion of stainless steel in artificial fresh water: role of enzymatic reactions. Proc. of EuroCorr 2006, Maastricht, The Netherlands

  42. Lane RA (2005) Under the microscope: understanding, detecting and preventing microbiologically influenced corrosion. AMPTIAC Quart 9(1):3–8

    Google Scholar 

  43. Langendijk PS, Hagemann J, Van der Hoeven JS (1999) Sulfate-reducing bacteria in periodontal pockets and in healthy oral sites. J Clin Periodontol 26:596–599

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Lee W, Characklis WG (1993) Corrosion of mild steel under anaerobic biofilm. Corrosion 49(3):186–198

    CAS  Article  Google Scholar 

  45. Lfill C (1999) The isolation and purification of sulphate-reducing bacteria from the colon of patients suffering from ulcerative colitis. B.Sc. (Hons) School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK

  46. Li SY, Jeon YG, Kho YT, Kang T (2001) Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil. Corrosion 57(9):815–828

    CAS  Article  Google Scholar 

  47. Li, SY, Kim YG, Kho YT (2003) Corrosion behavior of carbon steel influenced by sulfate-reducing bacteria in soil environments. Paper No. 03549, Corrosion 2003, National Association of Corrosion Engineers International, USA

  48. Linhardt P (1996) In: Heitz E, Flemming HC, Sand W (eds) Failure of chromium-nickel steel in a hydroelectric power plant by manganese-oxidising bacteria in microbially influenced corrosion of materials. Springer, Berlin

    Google Scholar 

  49. Little BJ, Wagner P (1997) Myths related to microbiologically influenced corrosion. Mater Perform 36(6):40–44

    CAS  Google Scholar 

  50. Little BJ, Ray RI, Pope RK (2000) The relationship between corrosion and the biological sulfur cycle, paper 00394, Corrosion 2000, National Association of Corrosion Engineers International, USA

  51. Little BJ, Lee J, Ray R (2011) Microbiologically influenced corrosion: global phenomena, local mechanisms. Corr Mat 36(1):46–51

    CAS  Google Scholar 

  52. Luptakova A, Macingovai E, Harbulakkova V (2009) Positive and negative aspects of sulphate-reducing bacteria in environment and industry. Nova Biotech 9(2):147–15

    Google Scholar 

  53. Maruthamuthu S, Muthukumar N, Natesan M, Palaniswamy N (2008) Role of air microbes on atmospheric corrosion. Corrosion Sci 94(3):359–363

    CAS  Google Scholar 

  54. Mattson E (1989) Basic corrosion technology for scientists and engineers. Ellis Horwood Publishers, UK

    Google Scholar 

  55. Maxwell S, Devine C, Rooney F, Spark I (2004) Monitoring and control of bacterial biofilms in oilfield water handling systems. Paper no. 04752, CORROSION 2004, NCAE International, USA

  56. McDougall R, Robson J, Paterson D, Tee W (1997) Bacteremia caused by a recently described novel Desulfovibrio species. J Clin Microbiol 1805–1808

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Miller JDA, Tiller AK (1970) In: Miller JDA (ed) Microbial aspects of metallurgy. American Elsevier Publishing Co., Inc., New York

    Google Scholar 

  58. Mizia RE, Alder Flitton MK, Bishop CW, Torres LL, Rogers RD, Wilkins SC (2000) Long term corrosion/degradation test first year results. Idaho National Engineering and Environmental Laboratory, USA

    Google Scholar 

  59. Morton SC (2003) Phosphorus in the environment and its role in anaerobic iron corrosion. PhD Dissertation, Virginia Polytechnic Institute, Virginia State University, USA

  60. Neville A, Hodgkiess T (1998) Comparative study of stainless steel and related alloy corrosion in natural sea water. Br Corrosion J 33(2):111–119

    CAS  Article  Google Scholar 

  61. Newman RC, Rumash K, Webster BJ (1992) The effect of pre-corrosion on the corrosion rate of steel in natural solutions containing sulphide: relevance to microbially influenced corrosion. Corrosion Sci 33(12):1877–1884

    CAS  Article  Google Scholar 

  62. Pope DH, Morris EA III (1995) Some experiences with microbiologically influenced corrosion. Mater Perform 34(5):23–28

    CAS  Google Scholar 

  63. Rainha VL, Fonseca ITE (1997) Kinetics studies on the SRB influenced corrosion of steel: a first approach. Corrosion Sci 39(4):807–813

    CAS  Article  Google Scholar 

  64. Ribas Silva M, Pinheiro SMM (2007) Micro-organisms actions on concrete. Presented at: MIC- An International Perspective Symposium, Perth, Australia

  65. Ronay D, Fesus I, Wolkober A (1987) New aspects in research in biocorrosion of underground structures. Corrosion' 87, Brighton, UK

  66. Sand W (1997) Microbial mechanisms of deterioration of inorganic substrates—a general mechanistic overview. Int Biodet Biodeg 40(2–4):183–190

    CAS  Article  Google Scholar 

  67. Sarioglu F, Javaherdashti R, Aksöz N (1993) Corrosion of a drilling pipe steel in an environment containing sulphate-reducing bacteria. Int J Pres Ves Pip 73:127–131

    Article  Google Scholar 

  68. Sathiyanarayanan S, Marikkannu C, Bala Srinivasan P, Muhupandi V (2002) Corrosion behaviour of Ti6Al4V and duplex stainless steel (UNS31803) in synthetic bio-fluids. Anti-Corros Meth Mater 49(1):33–37

    CAS  Article  Google Scholar 

  69. Schutz RW (1991) A case for titanium's resistance to microbiologically influenced corrosion. Mater Perform 30(1):58–61

    CAS  Google Scholar 

  70. Scott PJB, Goldie J (1991) Ranking alloys for susceptibility to MIC—a preliminary report on high-Mo alloys. Mater Perform 30(1):55–57

    CAS  Google Scholar 

  71. Scott PJB, Al-Hashem A, Carew J (2007) Experiments on MIC of steel FRP downhole Tubular in West Kuwait Brines. Paper No.07113, Corrosion 2007, National Association of Corrosion Engineers International, USA

  72. Setareh M, Javaherdashti R (2003) Assessment and control of MIC in a sugar cane factory. Mater Corrosion 54(4):259–263

    CAS  Article  Google Scholar 

  73. Singh Raman RK, Javaherdashti R, Panter C, Cherry BW, Pereloma EVP (2003) Microbiological environment assisted stress corrosion cracking of mild steel. Proc. of Corrosion Control and NDT, Melbourne, Australia

  74. Singleton R (1993) The sulfate-reducing bacteria: an overview. In: The sulfate-reducing bacteria: contemporary perspectives. Springer, New York

    Google Scholar 

  75. Stainless Steel Selection Guide (2002) Central States Industrial Equipment & Service, Inc., http://www.al6xn.com/litreq.htm, USA

  76. Stein AA (1993) In: Kobrin G (ed) MIC treatment and prevention in a practical manual on microbiologically influenced corrosion. National Association of Corrosion Engineers, Houston

    Google Scholar 

  77. Stott JFD (1988) Assessment and control of microbially induced corrosion. Met Mater 224–229

  78. Stott JFD (1993) What progress in the understanding of microbially induced corrosion has been made in the last 25 years? A personal viewpoint. Corrosion Sci 35(1–4):667–673

    CAS  Article  Google Scholar 

  79. Stott JFD, Skerry BS, King RA (1988) Laboratory evaluation of materials for resistance to anaerobic corrosion caused by sulphate reducing bacteria: philosophy and practical design. In: Francis PE, Lee TS (eds) The use of synthetic environments for corrosion testing. ASTM STP 970, pp 98–111, ASTM

  80. Tiller AK (1983a) Is stainless steel susceptible to microbial corrosion? In: Microbial corrosion. Proc. of the conference sponsored and organized jointly by The National Physics Laboratory and The Metals Society, The Metals Society, London, pp 104–107

  81. Tiller AK (1983b) Electrochemical aspects of microbial corrosion: an overview. Proc. of Microbial Corrosion, The Metals Society, London, UK

  82. Videla HA (1996) Manual of biocorrosion. CRC Press, USA

    Google Scholar 

  83. Videla HA (2007) Mechanisms of MIC: yesterday, today and tomorrow. In: “MIC—an international perspective” Symposium, Extrin Corrosion Consultants-Curtin University, Perth-Australia

  84. Videla HA, Herrera LK, Edyvean RG (2005) An updated overview of SRB induced corrosion and protection of carbon steel. Paper No. 05488, Corrosion 2005, National Association of Corrosion Engineers International, USA

  85. Wagner P, Little BJ (1993) Impact of alloying on microbiologically influenced corrosion—a review. Mater Perform 32(9):65–68

    CAS  Google Scholar 

  86. Wei S, Sanchez M, Trejo D, Gillis C (2010) Microbial mediated deterioration of reinforced concrete structures. Int Biodet Biodeg. doi:https://doi.org/10.1016/j.ibiod.2010.09.001

    CAS  Article  Google Scholar 

  87. Willis CL, Gibson GR, Holt J, Allison C (1999) Negative correlation between oral malodour and numbers and activities of sulphate-reducing bacteria in the human mouth. Arch Oral Biol 44:665–670

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. Worldwatch News Brief 99-3 (1999) Destructive storms drive insurance losses up. www.worldwatch.ord, accessed on March 26 1999

  89. Xu K, Dexter SC, Luther GW (1998) Voltametric microelectrodes for biocorrosion studies. Corrosion 54(10):814–823

    CAS  Article  Google Scholar 

  90. Yuan SJ, Pehkonen SO, Ting YP, Neoh KG, Kang FT (2010) Antibacterial inorganic–organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention. Langmuir 26(9):6728–6736. doi:https://doi.org/10.1021/la90408

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reza Javaherdashti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Javaherdashti, R. Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91, 1507–1517 (2011). https://doi.org/10.1007/s00253-011-3455-4

Download citation

Keywords

  • Corrosion
  • Microbiologically influenced corrosion
  • Sulphate-reducing bacteria
  • Biofilm
  • Stress corrosion cracking