Applied Microbiology and Biotechnology

, Volume 93, Issue 2, pp 837–845 | Cite as

Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E

  • Thomas Baumgarten
  • José Vazquez
  • Christian Bastisch
  • Wilfried Veron
  • Marc G. J. Feuilloley
  • Sandor Nietzsche
  • Lukas Y. Wick
  • Hermann J. Heipieper
Environmental Biotechnology


In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.


Pseudomonas putida DOT-T1E Adaptation Cell surface properties Solvent stress Membrane vesicles Water contact angle Zeta potential 



This work was partially supported by the European Commission within its Seventh Framework Program Project BACSIN (Contract No. 211684). We thank Karin Lange, Jana Reichenbach, Rita Remer and Birgit Würz (all UFZ) for their skilful help with the experiments and Frank-Dieter Kopinke for his help regarding the calculation of the van der Waals sizes (dimensions) of the molecules. This work contributed to the SAFIRA II and the CITE Research Programme of the Helmholtz Centre for Environmental Research.

Supplementary material

253_2011_3442_MOESM1_ESM.pdf (24 kb)
Fig. S1 Effect of 30-min pre-incubation with toxic concentrations (0.1 mM) of HgCl2 on the water contact angles (Fig. S1a) and the Zeta potential (Fig. S1b) of P. putida DOT-T1E cells in the presence of 0.3 mM of 1-decanol of living (filled symbols) and dead (open symbols) cells. The arrows indicate the time of addition of 0.3 mM 1-decanol (PDF 23 kb)
253_2011_3442_MOESM2_ESM.pdf (11 kb)
Fig. S2 Calculated van der Waals sizes of n-alkanols (filled circles) and chlorophenols (open diamonds) as tested during the experiments. For the names and logP values of the compounds, see Table 1 (PDF 11 kb)


  1. Costerton JW, Ingram JM, Cheng KJ (1974) Structure and function of cell-envelope of Gram-negative bacteria. Bacteriol Rev 38:87–110Google Scholar
  2. Darveau RP, Hancock REW (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 155:831–838Google Scholar
  3. de Carvalho C, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320CrossRefGoogle Scholar
  4. Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72:1395–1407CrossRefGoogle Scholar
  5. Geertsema-Doornbusch GI, Van der Mei HC, Busscher HJ (1993) Microbial cell-surface hydrophobicity—the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Meth 18:61–68CrossRefGoogle Scholar
  6. Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855Google Scholar
  7. Heipieper HJ, Martínez P (2009) Toxicity of hydrocarbons to microorganisms. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1565–1573Google Scholar
  8. Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051CrossRefGoogle Scholar
  9. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973CrossRefGoogle Scholar
  10. Hiementz PC (1986) Principles of colloid and surface chemistry. Marcel Dekker, New YorkGoogle Scholar
  11. Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227CrossRefGoogle Scholar
  12. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998Google Scholar
  13. Kadurugamuwa JL, Lam JS, Beveridge TJ (1993) Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother 37:715Google Scholar
  14. Kelly NM, MacDonald MH, Martin N, Nicas T, Hancock REW (1990) Comparison of the outer membrane protein and lipopolysaccharide profiles of mucoid and nonmucoid Pseudomonas aeruginosa. J Clinical Microbiol 28:2017Google Scholar
  15. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455CrossRefGoogle Scholar
  16. Loffler C, Eberlein C, Mausezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cistrans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75CrossRefGoogle Scholar
  17. Makin SA, Beveridge TJ (1996a) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307CrossRefGoogle Scholar
  18. Makin SA, Beveridge TJ (1996b) Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45°C. J Bacteriol 178:3350Google Scholar
  19. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425CrossRefGoogle Scholar
  20. Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846CrossRefGoogle Scholar
  21. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502CrossRefGoogle Scholar
  22. Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612CrossRefGoogle Scholar
  23. Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238CrossRefGoogle Scholar
  24. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234CrossRefGoogle Scholar
  25. Picot L, Mezghani-Abdelmoula S, Chevalier S, Merieau A, Lesouhaitier O, Guerillon J, Cazin L, Orange N, Feuilloley MGJ (2004) Regulation of the cytotoxic effects of Pseudomonas fluorescens by growth temperature. Res Microbiol 155:39–46CrossRefGoogle Scholar
  26. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132Google Scholar
  27. Ramos J, Duque E, Huertas M, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916Google Scholar
  28. Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171CrossRefGoogle Scholar
  29. Rekker RF, de Kort HM (1979) The hydrophobic fragmental constant, an extension to a 1000 data point set. J Eur Med Chem 14:479–488Google Scholar
  30. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as indicator for the presence of cell surface polymers that inhibit adhesion. Coll Surf B Biointerf 4:191–197CrossRefGoogle Scholar
  31. Rosenberg M (2006) Microbial adhesion to hydrocarbons: 25 years of doing MATH. FEMS Microbiol Lett 262:129–134CrossRefGoogle Scholar
  32. Rutter P, Vincent B (1980) The adhesion of microorganisms to surfaces: physico-chemical aspects. In: Berkeley R, Lynch R, Mellin J, Rutter P, Vincent B (eds) Microbial adhesion to surfaces. Horwood, Chichester, pp 79–93Google Scholar
  33. Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795CrossRefGoogle Scholar
  34. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957CrossRefGoogle Scholar
  35. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198CrossRefGoogle Scholar
  36. Tashiro Y, Ichikawa S, Shimizu M, Toyofuku M, Takaya N, Nakajima-Kambe T, Uchiyama H, Nomura N (2010a) Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Appl Environ Microbiol 76:3732–3739CrossRefGoogle Scholar
  37. Tashiro Y, Toyofuku M, Nakajima-Kambe T, Uchiyama H, Nomura N (2010b) Bicyclic compounds repress membrane vesicle production and Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 304:123–130CrossRefGoogle Scholar
  38. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987a) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901Google Scholar
  39. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987b) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897Google Scholar
  40. Weast RC (ed) (1981) CRC handbook of chemistry and physics, 62nd edn. CRC, Boca RatonGoogle Scholar
  41. Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefGoogle Scholar
  42. Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69:6133–6142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Baumgarten
    • 1
  • José Vazquez
    • 1
  • Christian Bastisch
    • 1
  • Wilfried Veron
    • 2
  • Marc G. J. Feuilloley
    • 2
  • Sandor Nietzsche
    • 3
  • Lukas Y. Wick
    • 4
  • Hermann J. Heipieper
    • 1
  1. 1.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.LMDF-SME UPRES EA4312Université de RouenEvreuxFrance
  3. 3.Electron Microscopic CentreClinics of the Friedrich Schiller University JenaJenaGermany
  4. 4.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations