Skip to main content

Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid

Abstract

Since its first description in the early 1960s, scleroglucan attracted much attention from both academia and industry. Scleroglucan is an exopolysaccharide secreted by the basidiomycete Sclerotium rolfsii and appreciated as a multipurpose compound applicable in many industrial fields, including oil industry, food industry and pharmacy. In this review, the current knowledge on scleroglucan chemistry, genetics, biosynthesis and production will be summarized and different application possibilities will be discussed. The biosynthesis of scleroglucan in S. rolfsii will be highlighted by recent transcriptomic data and linked to physiological data to better understand the biogenesis of scleroglucan and its link to the phytopathologic lifestyle of S. rolfsii.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Armentrout VN, Graves LB, Maxwell DP (1978) Localization of enzymes of oxalate biosynthesis in microbodies of Scierotium rolfsii. Phytopathology 68:1597–1599

    Article  CAS  Google Scholar 

  • Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsii. NC Agr Expt St Tech Bul 174

  • Bardet M, Rousseau A, Vincendon M (1993) High-resolution solid-state 13C CP/MAS NMR study of scleroglucan hydration. Magn Reson Chem 31(10):887–892

    Article  CAS  Google Scholar 

  • Bateman DF (1972) The polygalacturonase complex produced by Sclerotium rolfsii. Physiol Plant Pathol 2(2):175–184

    Article  CAS  Google Scholar 

  • Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211

    CAS  PubMed  Google Scholar 

  • Batra KK, Nordin JH, Kirkwood S (1969) Biosynthesis of the β-glucan of Sclerotium rolfsii sacc. Direction of chain propagation and the insertion of the branch residues. Carbohyd Res 9(2):221–229

    Article  CAS  Google Scholar 

  • Bimczok D, Wrenger J, Schirrmann T, Rothkötter HJ, Wray V, Rau U (2009) Short chain regioselectively hydrolyzed scleroglucans induce maturation of porcine dendritic cells. Appl Microbiol Biot 82(2):321–331

    Article  CAS  Google Scholar 

  • Bluhm TL, Deslandes Y, Marchessault RH, Pérez S, Rinaudo M (1982) Solid-state and solution conformation of scleroglucan. Carbohyd Res 100(1):117–130

    Article  CAS  Google Scholar 

  • Bocchinfuso G, Mazzuca C, Sandolo C, Margheritelli S, Alhaique F, Coviello T, Palleschi A (2010) Guar gum and scleroglucan interactions with borax: experimental and theoretical studies of an unexpected similarity. J Phys Chem B 114(41):13059–13068

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Seviour R (2007) Medicinal importance of fungal β-(1–>3), (1–>6)-glucans. Mycol Res 111(6):635–652

    Article  CAS  PubMed  Google Scholar 

  • Chupp C, Sherf AF (1960) Vegetables disease and their control. Ronald, New York, pp 314–317

    Google Scholar 

  • Coviello T, Coluzzi G, Palleschi A, Grassi M, Santucci E, Alhaique F (2003a) Structural and rheological characterization of scleroglucan/borax hydrogel for drug delivery. Int J Biol Macromol 32(3–5):83–92

    Article  CAS  PubMed  Google Scholar 

  • Coviello T, Grassi M, Lapasin R, Marino A, Alhaique F (2003b) Scleroglucan/borax: characterization of a novel hydrogel system suitable for drug delivery. Biomaterials 24(16):2789–2798

    Article  CAS  PubMed  Google Scholar 

  • Coviello T, Palleschi A, Grassi M, Matricardi P, Bocchinfuso G, Alhaique F (2005) Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules 10(1):6–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coviello T, Alhaique F, Dorigo A, Matricardi P, Grassi M (2007) Two galactomannans and scleroglucan as matrices for drug delivery: preparation and release studies. Eur J Pharm Biopharm 66(2):200–209

    Article  CAS  PubMed  Google Scholar 

  • Dae EJ, KI SS, Taek CG, J.Y. S, Kyung KJ, Man JY, Jung AH, Ni CN (2009) Method for production of scleroglucan through cultivation of Sclerotium sp. in culture medium including mandarin peels as carbon sources. C12P19/04

  • Davison P, Mentzer E (1982) Polymer flooding in North Sea reservoirs. SPE J 22(3):353–362

    CAS  Google Scholar 

  • Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273

    Article  CAS  Google Scholar 

  • Deshpande MV, Balkrishnan H, Ranjekar PK, Shankar V (1987) Isolation and immobilization of Sclerotium rolfsii protoplasts. Biotechnol Lett 9(1):49–52

    Article  CAS  Google Scholar 

  • Dogsa I, Strancar J, Laggner P, Stopar D (2008) Efficient modeling of polysaccharide conformations based on small-angle X-ray scattering experimental data. Polymer 49(5):1398–1406

    Article  CAS  Google Scholar 

  • Doster M, Martha S, Nute AJ, Christopher CA (1984) Method of recovering petroleum from underground formations. USA Patent 4,457,372

  • Duc ANC (1982) Glucosylglucans and their use in gastroenterology, especially in the treatment of colon disorders. Europe Patent 45,338

    Google Scholar 

  • Dutton M, Evans C (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Bot 42:881–895

    CAS  Google Scholar 

  • Fariña JI, Siñeriz F, Molina OE, Perotti NI (1996) Determination of radial growth rate of colonies of Sclerotium rolfsii F-6656 for the evaluation of culture medium, optimum incubation temperature, osmo- and halotolerance. Rev Argent Microbiol 28(4):190–196

    PubMed  Google Scholar 

  • Fariña JI, Siñeriz F, Molina OE, Perotti NI (1998) High scleroglucan production by Sclerotium rolfsii: influence of medium composition. Biotechnol Lett 20(9):825–831

    Article  Google Scholar 

  • Fariña JI, Siñeriz F, Molina OE, Perotti NI (2001) Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohyd Polym 44(1):41–50

    Article  Google Scholar 

  • Fariña JI, Molina OE, Figueroa LIC (2004) Formation and regeneration of protoplasts in Sclerotium rolfsii ATCC 201126. J Appl Microbiol 96(2):254–262

    Article  PubMed  Google Scholar 

  • Fariña JI, Viñarta SC, Cattaneo M, Figueroa LIC (2009) Structural stability of Sclerotium rolfsii ATCC 201126 β-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. J Appl Microbiol 106(1):221–232

    Article  CAS  PubMed  Google Scholar 

  • Farwick M, Lersch P, Schmitz G, Müllner S, Wattenberg A (2009) “Skin-omics”: use of genomics, proteomics and lipidomics to assess effects of low molecular weight scleroglucan. Cosmetic Science Technology Evonik Industries, pp 100–105

  • Fosmer A, Gibbons WR, Heisel NJ (2010) Reducing the cost of scleroglucan production by use of a condensed corn solubles medium. J Biotech Res 2(131–143)

    CAS  Google Scholar 

  • Funami T (2010) Atomic force microscopy imaging of food polysaccharides. Food Sci and Technol Res 16(1):1–12

    Article  CAS  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48

    Article  CAS  PubMed  Google Scholar 

  • Griffith WL, Compere AL, Westmoreland CG, Johnson JS (1981) Separation of biopolymer from fermentation broths. In: Synthetic membranes, vol II. ACS symposium series, vol 154. Am Chem Soc 154:171–192

    CAS  Google Scholar 

  • Gura E, Rau U (1993) Comparison of agitators for the production of branched β-1,3-d-glucans by Schizophyllum commune. J Biotechnol 27(2):193–201

    Article  CAS  Google Scholar 

  • Haarstrick A, Rau U, Wagner F (1991) Cross-flow filtration as a method of separating fungal cells and purifying the polysaccharide produced. Bioprocess Biosyst Eng 6(4):179–186

    Article  CAS  Google Scholar 

  • Halleck FE (1967) Polysaccharides and methods for production thereof. US Patent 3,301,848

  • Halleck FE (1969) Paint composition containing polysaccharides. US Patent 3,447,940

  • Halleck FE (1970) Wave set composition containing a polysaccharides. US Patent 3,507,290

  • Halleck FE (1972) Cosmetic composition employing water-soluble polysaccharide. US Patent 3,659,025

  • Jain A, Gupta Y, Jain SK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10(1):86–128

    CAS  PubMed  Google Scholar 

  • Jeannin M, Rezzoug SA, Maache-rezzoug Z, Cohendoz S, Allaf K (2000) Solid-state 13C NMR study of scleroglucan polysaccharide. Effect of the drying process and hydration on scleroglucan structure and dynamics. Int J Polym Anal Ch 6(1):177–191

    CAS  Google Scholar 

  • Johnson M (1996) Fluid systems for controlling fluid losses during hydrocarbon recovery operations. United States Patent 5228524

  • Jong S, Donovick R (1989) Antitumor and antiviral substances from fungi. Adv Appl Microbiol 34(183)

  • Kang X, Wang Y, Harvey LM, McNeil B (2000) Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess Biosyst Eng 23(1):69–74

    Article  CAS  Google Scholar 

  • Kelkar HS, Shankar V, Deshpande MV (1990) Rapid isolation and regeneration of Sclerotium rolfsii protoplasts and their potential application for starch hydrolysis. Enzyme Microb Tech 12(7):510–514

    Article  CAS  Google Scholar 

  • Kitamura S, Takeo K, Kuge T, Stokke BT (1991) Thermally induced conformational transition of double-stranded xanthan in aqueous salt solutions. Biopolymers 31(11):1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Hirano T, Takeo K, Fukada H, Takahashi K, Falch BH, Stokke BT (1996) Conformational transitions of schizophyllan in aqueous alkaline solution. Biopolymers 39:407–416

    Article  CAS  Google Scholar 

  • Kony DB, Damm W, Stoll S, van Gunsteren WF, Hünenberger PH (2007) Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys J 93(2):442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottutz E, Rapp P (1990) 1,3-β-Glucan synthase in cell-free extracts from mycelium and protoplasts of Sclerotium glucanicum. J Gen Microbiol 136(8):1517–1523

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresource Technol 99(5):1036–1043

    Article  CAS  Google Scholar 

  • Laroche C, Michaud P (2007) New developments and prospective applications for b (1,3) glucans. Recent Pat Biotechnol 1:59–73

    Article  CAS  PubMed  Google Scholar 

  • Leathers T, Nunnally M, Price N (2006) Co-production of schizophyllan and arabinoxylan from corn fiber. Biotechnol Lett 28(9):623–626

    Article  CAS  PubMed  Google Scholar 

  • Lecacheux D, Mustiere Y, Panaras R, Brigand G (1986) Molecular weight of scleroglucan and other extracellular microbial polysaccharides by size-exclusion chromatography and low angle laser light scattering. Carbohyd Polym 6(6):477–492

    Article  CAS  Google Scholar 

  • Lee K (1998) Characterization of scleroglucan fermentation by Sclerotium rolfsii in terms of cell, scleroglucan and by-product, oxalic acid concentrations, viscosity and molecular weight distribution. Irvine

  • Maier T (2004) Process for the production of scleroglucan. Germany Patent 20,040,265,977

  • Mastromarino P, Petruzziello R, Macchia S, Rieti S, Nicoletti R, Orsi N (1997) Antiviral activity of natural and semisynthetic polysaccharides on early steps of rubella virus infection. J Antimicrob Chemother 39:339

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Bateman DF (1965) Influence of carbon source and pH on oxalate accumulation in culture filtrates of S. rolfsii. Phytopathology 58:1351–1355

    Google Scholar 

  • McIntire TM, Brant DA (1998) Observations of the (1 → 3)-β-d-glucan linear triple helix to macrocycle interconversion using noncontact atomic force microscopy. J Am Chem Soc 120(28):6909–6919

    Article  CAS  Google Scholar 

  • Montant PC, Thomas L (1977) Structure d'un glucane exo-cellulaire produit par le Botrytis cinerea. Ann Sci Nat Bot Biol Veg 12:185–192

    Google Scholar 

  • Montant PC, Thomas L (1978) Proprietes physicochimiques du P(1,3)-β-(1,6) glucane exocellulaire produit par le Botrytis cinerea. Ann Sci Nat Bot Biol Veg 12:39–43

    Google Scholar 

  • Moresi M, Lo Presti S, Mancini M (2001) Rheology of scleroglucan dispersions. J Food Eng 50(4):235–245

    Article  Google Scholar 

  • Munir E, Yoon J, Tokimatsu T, Hattori T, Shimada M (2001) A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Proc Natl Acad Sci USA 98(20):11126–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Rivas A, Specht C, Drummond B, Froeliger E, Novotny C, Ullrich R (1986) Transformation of the basidiomycete, Schizophyllum commune. Mol Gen Genet 205(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Nardin R, Vincendon M (1989) Isotopic exchange study of the scleroglucan chain in solution. Macromolecules 22(9):3551–3554

    Article  CAS  Google Scholar 

  • Noïk C, Lecourtier J (1993) Studies on scleroglucan conformation by rheological measurements versus temperature up to 150°C. Polymer 34(1):150–157

    Article  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kues U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HA (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963

    Article  CAS  PubMed  Google Scholar 

  • Palleschi A, Bocchinfuso G, Coviello T, Alhaique F (2005) Molecular dynamics investigations of the polysaccharide scleroglucan: first study on the triple helix structure. Carbohyd Res 340(13):2154–2162

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259

    Article  CAS  PubMed  Google Scholar 

  • Patchen LBP (2000) Mobilisation of peripheral blood precursor cells by beta (1,3)-glucan. USA Patent

  • Pilz F, Auling G, Dr S, Rau U, Wagner F (1991) A high-affinity Zn2+ uptake system controls growth and biosynthesis of an extracellular, branched β-1,3-β-1,6-glucan in Sclerotium rolfsii ATCC 15205. Exp Mycol 15(3):181–192

    Article  CAS  Google Scholar 

  • Pirri RG (1996) Scleroglucan gel applied in the oil industry. France Patent 5,555,936

  • Plank J (2005) Applications of Biopolymers in Construction Engineering. In: Biopolymers, Whiley Online

  • Prets H, Eusley H, McNamee R, Jones E, Browder I, Williams D (1991) Isolation, physicochemical characterisation and pre-clinical efficacy evaluation of a soluble scleroglucan. J Pharmacol Exp Ther 257:500

    Google Scholar 

  • Pretus HA, Ensley HE, McNamee RB, Jones EL, Browder IW, Williams DL (1991) Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan. J Pharmacol Exp Ther 257(1):500–510

    CAS  PubMed  Google Scholar 

  • Qian JY, Chen W, Zhang WM, Zhang H (2009) Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: a primary approach. Carbohyd Polym 78(3):620–625

    Article  CAS  Google Scholar 

  • Rau U, Müller RJ, Cordes K, Klein J (1990) Process and molecular data of branched 1,3-β-d-glucans in comparison with xanthan. Bioprocess Biosyst Eng 5(2):89–93

    Article  CAS  Google Scholar 

  • Rau U, Gura E, Olszewski E, Wagner F (1992) Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol Biot 9(1):19–25

    Article  CAS  Google Scholar 

  • Reyes RG (2009) Coconut water as a novel culture medium for the biotechnological production of schizophyllan. Journal of Nature Studies 7(2)

  • Rinaudo M, Vincendon M (1982) 13C NMR structural investigation of scleroglucan. Carbohydr Polym 2(2):135–144

    Article  CAS  Google Scholar 

  • Rizk S, Duru C, Gaudy D, Jacob M, Ferrari F, Bertoni M, Caramella C (1994) Physico-chemical characterization and tabletting properties of scleroglucan. Int J Pharm 112(2):125–131

    Article  CAS  Google Scholar 

  • Rodgers NE (1973) Scleroglucan. In: Press A (ed) Industrial gums. Academic, New York, pp 499–511

  • Sakurai K, Shinkai S (2000) Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc 122:4520–4521

    Article  CAS  Google Scholar 

  • Sakurai K, Mizu M, Shinkai S (2001) Polysaccharide-polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of the natural polysaccharide schizophyllan in the macromolecular complex with single-stranded RNA and DNA. Biomacromolecules 2:641–650

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S (2005) β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Commun 4383–4398

  • Sandford PA (1979) Exocellular, microbial polysaccharides. Adv Carbohydr Chem Biochem 36:265–313

    Article  CAS  PubMed  Google Scholar 

  • Schilling BM (2000) Sclerotium rolfsii ATCC 15205 in continuous culture: economical aspects of scleroglucan production. Bioprocess Biosyst Eng 22(1):57–61

    Article  CAS  Google Scholar 

  • Schilling BM, Henning A, Rau U (2000) Repression of oxalic acid biosynthesis in the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Biosyst Eng 22(1):51–55

    Article  CAS  Google Scholar 

  • Schmid J (2008) Genetics of scleroglucan production by Sclerotium rolfsii. University of Technology, Berlin

    Google Scholar 

  • Schmid F, Stone BA, McDougall BM, Bacic A, Martin KL, Brownlee RTC, Chai E, Seviour RJ (2001) Structure of epiglucan, a highly side-chain/branched (1-->3;1-->6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht. Carbohyd Res 331(2):163–171

    Article  CAS  Google Scholar 

  • Schmid F, Stone BA, Brownlee RT, McDougall BM, Seviour RJ (2006) Structure and assembly of epiglucan, the extracellular (1–>3;1–>6)-β-glucan produced by the fungus Epicoccum nigrum strain F19. Carbohydr Res 341(3):365–373

    Article  CAS  PubMed  Google Scholar 

  • Schmid J, Müller-Hagen D, Bekel T, Funk L, Stahl U, Sieber V, Meyer V (2010) Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii. BMC Genomics 11:329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuren F, Wessels J (1994) Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr Genet 26(2):179–183

    Article  CAS  PubMed  Google Scholar 

  • Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011a) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31(2):170–185

    Article  CAS  PubMed  Google Scholar 

  • Seviour RJ, Schmid F, Campbell B (2011b) Fungal exopolysaccharides. In: Popa V (ed) Polysaccharides in medicinal and pharmaceutical applications. ISmithers, Shrewsbury

    Google Scholar 

  • Sheth P, Lachman L (1967) The coating of tablets. France Patent 1,480,874

  • Sieber V, Wittmann E, Buchholz S (2005) Polysaccharide. In: Antranikian PG (ed) Lehrbuch für Angewandte Mikrobiologie. Springer, Berlin, pp 399–410

  • Singh P, Wisler R, Tokuzen R, Nakahara W (1974) Scleroglucan, an antitumor polysaccharide from Sclerotium glucanicum. Carbohyd Res 37:245

    Article  CAS  Google Scholar 

  • Sletmoen M, Stokke BT (2008) Higher order structure of (1,3)-β-d-glucans and its influence on their biological activities and complexation abilities. Biopolymers 89(4):310–321

    Article  CAS  PubMed  Google Scholar 

  • Stokke BT, Elgsaeter A, Hara C, Kitamura S, Takeo K (1993) Physicochemical properties of (1 → 6)-branched (1 → 3)-β-d-glucans. 1. Physical dimensions estimated from hydrodynamic and electron microscopic data. Biopolymers 33(4):561–573

    Article  CAS  PubMed  Google Scholar 

  • Stokke BT, Falch BH, Dentini M (2001) Macromolecular triplex zipping observed in derivatives of fungal (1 → 3)-β-d-glucan by electron and atomic force microscopy. Biopolymers 58(6):535–547

    Article  CAS  PubMed  Google Scholar 

  • Stone BA (2009) Chemistry of β-glucans. In: Antony B, Geoffrey BF, Bruce AS (eds) Chemistry, biochemistry, and biology of 1–3 β-glucans and related polysaccharides, vol 1. Academic, San Diego, pp 5–46

    Google Scholar 

  • Survase SA, Saudagar PS, Bajaj IB, Singhal RS (2007a) Scleroglucan: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(2):107–118

    CAS  Google Scholar 

  • Survase SA, Saudagar PS, Singhal RS (2007b) Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresour Technol 98(2):410–415

    Article  CAS  PubMed  Google Scholar 

  • Survase SA, Saudagar PS, Singhal RS (2007c) Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresour Technol 98(7):1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1977) Microbial exopolysaccharide synthesis. In: Extracellular microbial polysaccharides, vol 45. ACS Symposium Series, vol 45. American Chemical Society, pp 40–57

  • Sutherland IW (1993) Biosynthesis of extracellular polysaccharides. In: Whsitler RL, BeMiller JN (eds) Industrial gums. Academic, San Diego, pp 69–85

    Chapter  Google Scholar 

  • Taskin M, Erdal S, Canli O (2010) Utilization of waste loquat (Eriobotrya japonica; Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology 19(4):1069–1075

    Article  CAS  Google Scholar 

  • Taurhesia S, McNeil B (1994) Physicochemical factors affecting the formation of the biological response modifier scleroglucan. J Chem Technol Biotechnol 59(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Viñarta SC, François NJ, Daraio ME, Figueroa LIC, Fariña JI (2007) Sclerotium rolfsii scleroglucan: the promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. Int J Biol Macromol 41(3):314–323

    Article  CAS  PubMed  Google Scholar 

  • Vuppu AK, Garcia AA, Vernia C (1997) Tapping mode atomic force microscopy of scleroglucan networks. Biopolymers 42(1):89–100

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, McNeil B (1994) Scleroglucan and oxalic acid formation by Sclerotium glucanicum in sucrose supplemented fermentation. Biotechnol Lett 16:605–610

    Article  CAS  Google Scholar 

  • Wang Y, McNeil B (1995) Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzyme MicrobTech 17(10):893–899

    Article  CAS  Google Scholar 

  • Wang Y, McNeil B (1996) Scleroglucan. Crit Rev Biotechnol 16(3):185–215

    Article  PubMed  Google Scholar 

  • Wang X, Xu X, Zhang L (2008) Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution. J Phys Chem B 112(33):10343–10351

    Article  CAS  PubMed  Google Scholar 

  • Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. In: Allen I, Laskin SS, Geoffrey MG (eds) Advances in applied microbiology, vol 72. Academic, Burlington, pp 89–136

  • Xu Z, Harrington TC, Gleason ML, Batzer JC (2010) Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia 102(2):337–346

    Article  CAS  PubMed  Google Scholar 

  • Yanaki T, Norisuye T (1983) Triple helix and random coil of scleroglucan in dilute solution. Polym J 15:187–396

    Article  Google Scholar 

  • Yanaki T, Kojima T, Norisuye T (1981) Triple helix of scleroglucan in dilute aqueous sodiumhydroxide. Polym J 153:1135–1143

    Article  Google Scholar 

  • Yasokawa D, Shimizu T, Nakagawa R, Ikeda T, Nagashima K (2003) Cloning, sequencing, and heterologous expression of a cellobiohydrolase cDNA from the basidiomycete Corticium rolfsii. Biosci Biotech Bioch 67(6):1319–1326

    Article  CAS  Google Scholar 

  • Yu R, Wang L, Zhang H, Zhou C, Zhao Y (2004) Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75(7–8):662–666

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the German Federal Ministry of Research and Education for financial support (BMBF grant 0313397). The authors are grateful to Brian McNeal and Robert Seviour for exchange of unpublished documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schmid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmid, J., Meyer, V. & Sieber, V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91, 937–947 (2011). https://doi.org/10.1007/s00253-011-3438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3438-5

Keywords

  • Scleroglucan
  • Biosynthesis
  • Sclerotium rolfsii
  • Fermentation
  • Transcriptome
  • Exopolysaccharide