Skip to main content

Advertisement

Log in

A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An open reading frame (ORF) encoding the enzyme β-glucosidase from the extremely thermophilic bacterium Fervidobacterium islandicum has been identified, cloned and sequenced. The bgl1A gene was cloned in a pET-Blue1 vector and transformed in Escherichia coli, resulting in high-level expression of β-glucosidase FiBgl1A that was purified to homogeneity in a two-step purification. FiBgl1A is composed of 459 amino acid residues and showed high homology to glycoside hydrolase family 1 proteins. It exhibited highest activity towards p-nitrophenyl-β-d-glucopyranoside with an optimum activity at pH 6.0 and 7.0 and at 90 °C. The enzyme is resistant to glucose inhibition. Furthermore, it did not require divalent cations for activity, nor was it affected by the addition of p-chloromercuribenzoate (10 mM), EDTA (10 mM), urea (10 mM) or dithiothreitol (10 mM). Addition of surfactants (with the exception of SDS) and a number of solvents enhanced the activity of FiBgl1A. It also displayed remarkable activity across a broad temperature range (80–100 °C). The thermoactivity and thermostability of FiBgl1A and its resistance to denaturing and reducing agents make this enzyme a potential candidate for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait N, Creuzet N, Cattaneo J (1979) Characterization and purification of a thermostable β-glucosidase from Clostridium thermocellum. Biochem Biophys Res Commun 90:537–546

    Article  CAS  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  • Barrett T, Suresh CG, Tolley SP, Dodson EJ, Hughes MA (1995) The crystal structure of a cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure 3:951–960

    Article  CAS  Google Scholar 

  • Béguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248

    Article  Google Scholar 

  • Bowers E, Ragland L, Byers L (2007) Salt effects on β-glucosidase: pH-profile narrowing. Biochim Biophys Acta 1774:1500–1507

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Branden C (1991) The TIM barrel—the most frequently occurring folding motif in proteins. Curr Opin Struct Biol 1:978–983

    Article  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook. Humana, Totowa

    Google Scholar 

  • Gloster TM, Roberts S, Ducros VM, Perugino G, Rossi M, Hoos R, Moracci M, Vasella A, Davies GJ (2004) Structural studies of the beta-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovalently bound inhibitors. Biochemistry 43:6101–6109

    Article  CAS  Google Scholar 

  • Gödde C, Sahm K, Brouns S, Kluskens L, van der Oost J, de Vos W, Antranikian G (2005) Cloning and expression of Islandin, a new thermostable subtilisin from Fervidobacterium islandicum, in Escherichia coli. Appl Environ Microbiol 71:3951–3958

    Article  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    Article  CAS  Google Scholar 

  • Hong J, Ladisch M, Gong C, Wankat P, Tsao G (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788

    Article  CAS  Google Scholar 

  • Huber R, Woese C, Langworthy T, Kristjansson J, Stetter K (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the "Thermotogales". Arch Microbiol 154:105–111

    Article  CAS  Google Scholar 

  • Jenkins J, Lo Leggio L, Harris G, Pickersgill R (1995) β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases from a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett 362:281–285

    Article  CAS  Google Scholar 

  • Jones D (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  • Kengen S, Luesink E, Stams A, Zehnder A (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312

    Article  CAS  Google Scholar 

  • Klippel B, and Antranikian G (2011) Lignocellulose converting enzymes from thermophiles. In Horikoshi K (ed) Extremophiles handbook. Springer, New York, pp 444–474

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinform 23:2947–2948

    Article  CAS  Google Scholar 

  • Li X, Bhaskar R, Yang H, Wang D, Miao Y (2009) Screening and identification of new isolate: thermostable Escherichia coli with novel thermoalkalotolerant cellulases. Curr Microbiol 59:393–399

    Article  CAS  Google Scholar 

  • MacLellan J (2010) Strategies to enhance enzymatic hydrolysis of cellulose in lignocellulosic biomass. MMG 445 Basic Biotech 6:31–35

    Google Scholar 

  • Moracci M, Capalbo L, Ciaramella M, Rossi M (1996) Identification of two glutamic acid residues essential for catalysis in the β-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus. Protein Eng 9:1191–1195

    Article  CAS  Google Scholar 

  • Noh K, Oh DK (2009) Production of the rare ginsenosides compound K, compound Y and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol Pharm Bull 32:1830–1835

    Article  CAS  Google Scholar 

  • Ozaki H, Yamada K (1991) Isolation of Streptomyces sp. producing glucose-tolerant beta-glucosidases and properties of the enzymes. Agric Biol Chem 55:979–987

    Article  CAS  Google Scholar 

  • Patchett M, Daniel R, Morgan H (1987) Purification and properties of a stable β-glucosidase from an extremely thermophilic anaerobic bacterium. Biochem J 243:779–787

    CAS  Google Scholar 

  • Perez-Pons JA, Robordosa X, Querol E (1995) Properties of a novel glucose enhanced β-glucosidase purified from Streptomyces sp. ATCC11238. Biochim Biophys Acta 1251:145–153

    Article  Google Scholar 

  • Riou C, Salmon J, Vallierl M, Gunata Z, Barre P (1998) Purification, characterization and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  Google Scholar 

  • Romaniec M, Huskisson N, Barker P, Demain A (1993) Purification and properties of the Clostridium thermocellum bgl gene product expressed in Escherichia coli. Enzyme Microb Technol 15:393–400

    Article  CAS  Google Scholar 

  • Ryu D, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2:91–102

    Article  CAS  Google Scholar 

  • Saha B, Bothast R (1996) Production, purification and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Appl Environ Microbiol 62:3165–3170

    CAS  Google Scholar 

  • Singh A, Hayashi K (1995) Construction of chimeric β-glucosidases with improved enzymatic properties. J Biol Chem 270:21928–21933

    Article  CAS  Google Scholar 

  • Trimbur D, Warren R, Withers S (1992) Region-directed mutagenesis of residues surrounding the active site nucleophile in β-glucosidase from Agrobacterium faecalis. J Biol Chem 267:10248–10251

    CAS  Google Scholar 

  • Tull D, Withers S, Gilkes N, Kilburn D, Warren R, Aebersold R (1991) Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J Biol Chem 266:15621–15625

    CAS  Google Scholar 

  • Tykarska E, Lebioda L, Marchut E, Steczko J, Stec B (1990) Crystallization of alcohol oxidase from Pichia pastoris. Secondary structure predictions indicate a domain with the eightfold beta/alpha-barrel fold. J Protein Chem 9:83–86

    Article  CAS  Google Scholar 

  • Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Pérez-Pons JA (2001) Mechanism of the family 1 β-glucosidase from Streptomyces sp: catalytic residues and kinetic studies. Biochem 40:5975–5982

    Article  CAS  Google Scholar 

  • Voorhorst W, Eggen R, Luesink E, De Vos W (1995) Characterization of the celB gene coding for β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol 177:7105–7111

    CAS  Google Scholar 

  • Wang Q, Trimbur D, Graham R, Warren R, Withers S (1995) Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants. Biochem 34:14554–14562

    Article  CAS  Google Scholar 

  • Wierenga R (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193–198

    Article  CAS  Google Scholar 

  • Wood T (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410

    CAS  Google Scholar 

  • Wood T, McCrae S, Bhat K (1989) The mechanism of fungal cellulase action: synergism between components of Penicillum pinophilum cellulase in solubilizing hydrogen bond ordered cellulose. Biochem J 260:37–43

    CAS  Google Scholar 

  • Wright R, Yablonsky M, Shalita Z, Goyal A, Eveleigh D (1992) Cloning, characterization and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli. Appl Environ Microbiol 58:3455–3465

    CAS  Google Scholar 

  • Xin Z, Yinbo Q, Peiji G (1993) Acceleration of ethanol production from paper mill waster fiber by supplementation with β-glucosidases. Enzyme Microb Technol 15:62–65

    Article  Google Scholar 

  • Yan T, Lin C (1997) Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61:965–970

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B (2008) Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Appl Biochem Biotechnol 146:231–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. J. received a scholarship from DAAD (Deutscher Akademischer Austausch Dienst).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabed Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbour, D., Klippel, B. & Antranikian, G. A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum . Appl Microbiol Biotechnol 93, 1947–1956 (2012). https://doi.org/10.1007/s00253-011-3406-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3406-0

Keywords

Navigation