Skip to main content
Log in

Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allenza P, Morrell MJ, Detroy RW (1990) Conversion of mannose to fructose by immobilized mannose isomerase from Pseudomonas cepacia. Appl Biochem Biotechnol 24–25:171–182

    Article  Google Scholar 

  • Castro DP, Moraes CS, Garcia ES, Azambuja P (2007) Inhibitory effects of d-mannose on trypanosomatid lysis induced by Serratia marcescens. Exp Parasitol 115:200–204

    Article  CAS  Google Scholar 

  • Centeno MSJ, Guerreiro CIPD, Dias FMV, Morland C, Tailford LE, Goyal A, Prates JAM, Ferreira LMA, Caldeira RMH, Mongodin EF, Nelson KE, Gilbert HJ, Fontes CMGA (2006) Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus. FEMS Microbiol Lett 261:123–132

    Article  CAS  Google Scholar 

  • Chen FE, Zhao JF, Xiong FJ, Xie B, Zhang P (2007) An improved synthesis of a key intermediate for (+)-biotin from d-mannose. Carbohydr Res 342:2461–2464

    Article  CAS  Google Scholar 

  • Cho EA, Lee DW, Cha YH, Lee SJ, Jung HC, Pan JG, Pyun YR (2007) Characterization of a novel d-lyxose isomerase from Cohnella laevoribosii RI-39 sp. nov. J Bacteriol 189:1655–1663

    Article  CAS  Google Scholar 

  • Davis JA, Freeze HH (2001) Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse. Biochim Biophys Acta 1528:116–126

    Article  CAS  Google Scholar 

  • Hirose J, Maeda K, Yokoi H, Takasaki Y (2001) Purification and characterization of mannose isomerase from Agrobacterium radiobacter M-1. Biosci Biotechnol Biochem 65:658–661

    Article  CAS  Google Scholar 

  • Ito S, Hamada S, Yamaguchi K, Umene S, Ito H, Matsui H, Ozawa T, Taguchi H, Watanabe J, Wasaki J, Ito S (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem Biophys Res Commun 360:640–645

    Article  CAS  Google Scholar 

  • Ito S, Taguchi H, Hamada S, Kawauchi S, Ito H, Senoura T, Watanabe J, Nishimukai M, Matsui H (2008) Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol 79:433–441

    Article  CAS  Google Scholar 

  • Ito S, Hamada S, Ito H, Matsui H, Ozawa T, Taguchi H, Ito S (2009) Site-directed mutagenesis of possible catalytic residues of cellobiose 2-epimerase from Ruminococcus albus. Biotechnol Lett 31:1065–1071

    Article  CAS  Google Scholar 

  • Itoh H, Sato T, Izumori K (1995) Preparation of d-psicose from d-fructose by immobilized d-tagatose 3-epimerase. J Ferment Bioeng 80:101–103

    Article  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 30:109–136

    Article  Google Scholar 

  • Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK (2006a) Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol 72:981–985

    Article  CAS  Google Scholar 

  • Kim K, Kim HJ, Oh DK, Cha SS, Rhee S (2006b) Crystal structure of d-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate d-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. J Mol Biol 361:920–931

    Article  CAS  Google Scholar 

  • Kim NH, Kim HJ, Kang DI, Jeong KW, Lee JK, Kim Y, Oh DK (2008) Conversion shift of d-fructose to d-psicose for enzyme-catalyzed epimerization by addition of borate. Appl Environ Microbiol 74:3008–3013

    Article  CAS  Google Scholar 

  • Kwon HJ, Yeom SJ, Park CS, Oh DK (2010) Substrate specificity of a recombinant d-lyxose isomerase from Providencia stuartii for monosaccharides. J Biosci Bioeng 110:26–31

    Article  CAS  Google Scholar 

  • Lee YC, Wu HM, Chang YN, Wang WC, Hsu WH (2007) The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase contains two key histidine residues for reversible conversion. J Mol Biol 367:895–908

    Article  CAS  Google Scholar 

  • Lim BC, Kim HJ, Oh DK (2009) A stable immobilized d-psicose 3-epimerase for the production of d-psicose in the presence of borate. Process Biochem 44:822–828

    Article  CAS  Google Scholar 

  • Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-d-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J Biol Chem 271:16294–16299

    Article  CAS  Google Scholar 

  • Morita M, Sawa E, Yamaji K, Sakai T, Natori T, Koezuka Y, Fukushima H, Akimoto K (1996) Practical total synthesis of (2S, 3S, 4R)-1-O-(α-d-galactopyranosyl)-N-hexacosanoyl-2-amino-1, 3, 4-octadecanetriol, the antitumorial and immunostimulatory α-galactosylcer-amide, KRN7000. Biosci Biotechnol Biochem 60:288–292

    Article  CAS  Google Scholar 

  • Oyofo BA, DeLoach JR, Corrier DE, Norman JO, Ziprin RL, Mollenhauer HH (1989) Prevention of Salmonella typhimurium colonization of broilers with d-mannose. Poult Sci 68:1357–1360

    CAS  Google Scholar 

  • Park CS, Yeom SJ, Lim YR, Kim YS, Oh DK (2010) Substrate specificity of a recombinant d-lyxose isomerase from Serratia proteamaculans that produces d-lyxose and d-mannose. Lett Appl Microbiol 51:343–350

    Article  CAS  Google Scholar 

  • Senoura T, Taguchi H, Ito S, Hamada S, Matsui H, Fukiya S, Yokota A, Watanabe J, Wasaki J (2009) Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci Biotechnol Biochem 73:400–406

    Article  CAS  Google Scholar 

  • Stevens FJ, Stevens PW, Hovis JG, Wu TT (1981) Some properties of d-mannose isomerase from Escherichia coli K12. J Gen Microbiol 124:219–223

    CAS  Google Scholar 

  • Taguchi H, Senoura T, Hamada S, Matsui H, Kobayashi Y, Watanabe J, Wasaki J, Ito S (2008) Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiol Lett 287:34–40

    Article  CAS  Google Scholar 

  • Takagi Y, Nakai K, Tsuchiya T, Takeuchi T (1996) A 5′-(trifluoromethyl)anthracycline glycoside: synthesis of antitumor-active 7-O-(2,6-dideoxy-6,6,6-trifluoro-alpha-l-lyxo-hexopyranosyl) adriamycinone. J Med Chem 39:1582–1588

    Article  CAS  Google Scholar 

  • Takahashi S, Takahashi K, Kaneko T, Ogasawara H, Shindo S, Kobayashi M (1999) Human renin-binding protein is the enzyme N-acetyl-d-glucosamine 2-epimerase. J Biochem 125:348–353

    CAS  Google Scholar 

  • Takeshita K, Suga A, Takada G, Izumori K (2000) Mass production of d-psicose from d-fructose by a continuous bioreactor system using immobilized d-tagatose 3-epimerase. J Biosci Bioeng 90:453–455

    CAS  Google Scholar 

  • van den Berg R, Peters JA, van Bekkum H (1994) The structure and (local) stability constants of borate esters of mono- and di-saccharides as studied by 11B and 13C NMR spectroscopy. Carbohydr Res 253:1–12

    Article  Google Scholar 

  • van Staalduinen LM, Park CS, Yeom SJ, Adams-Cioaba MA, Oh DK, Jia Z (2010) Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157:H7. J Mol Biol 401:866–881

    Article  Google Scholar 

  • Zhang L, Mu W, Jiang B, Zhang T (2009) Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnol Lett 31:857–862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research of Korea (NRF) through the National Research Lab. Program, Ministry of Education, Science and Technology (R0A-2007-000-20015-0) and the Next-Generation BioGreen 21 Program grant, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, CS., Kim, JE., Choi, JG. et al. Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol 92, 1187–1196 (2011). https://doi.org/10.1007/s00253-011-3403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3403-3

Keywords