Skip to main content

Development of a simple cultivation method for isolating hitherto-uncultured cellulase-producing microbes

Abstract

Although enrichment culture is typically employed to isolate cellulolytic microbes, this approach tends to favor fast-growing species and discriminates against all others. Therefore, efforts to prevent the overgrowth of fast-growing species are necessary to isolate novel cellulase-producing strains. In this study, we developed a simple culture method for isolating hitherto-uncultured microbes that possess cellulase activity, particularly exocellulase. In this method, the microbial source (a forest soil) was suspended in sterilized water and inoculated onto a mineral salts agar medium, which was then overlaid with filter paper to sandwich the microbial suspension between the agar surface and paper. The filter paper fibers served to immobilize the microbial cells and were the dominant carbon source. Following cultivation at 30°C for 2 weeks, emerging colonies were isolated based on their morphology and were then subjected to phylogenetic and enzyme analyses. Using this method, 2,150 CFUs/g dry soil were obtained, and the ratio of fungal to bacterial isolates was approximately 4:1. Phylogenetic analyses revealed that most fungal and bacterial isolates belong to ten and two genera, respectively. Notably, all isolates possessed exocellulase activity, and several strains showed strong activity that was comparable to Trichoderma cellulase. Many isolates also exhibited cellulase and xylanase activity, and several strains possessed laccase activity. It is expected that the culture method described here will be useful for the isolation of hitherto-uncultured cellulolytic microbes and the identification of novel cellulases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic logical alignment search tool. J Mol Biol 215:403–410

    CAS  Article  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemistry 72:248–254

    CAS  Google Scholar 

  5. Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL (ed) Methods of soil analysis, Pt 2. Chemical and microbiological properties. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  6. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  Google Scholar 

  7. Da Rocha UN, Van Overbeek L, Van Elsas JD (2009) Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 69(3):313–328

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71(2):826–834

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36(1):51–65

    CAS  Article  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  11. Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75(2):319–328

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Ferrari BC, Gillings MR (2009) Cultivation of fastidious bacteria by viability staining and micromanipulation in a soil substrate membrane system. Appl Environ Microbiol 75(10):3352–3354

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71(12):8714–8720

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature Prot 3(8):1261–1269

    CAS  Article  Google Scholar 

  15. Ferrer M, Golyshina OV, Chemikova TN, Khachane AN, Reyes-Duarte D, Santos VAP, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenomic library of bovine rumen microflora. Environ Microbiol 7(12):1996–2010

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Folan MA, Coughlan MP (1978) The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii. Int J Biochem 9(10):717–722

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Fujii K, Takeshi K (2007) Penicillium strains as dominant degraders in soil for coffee residue, a biological waste unsuitable for fertilization. J Appl Microbiol 103(6):2713–2720

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    CAS  Article  Google Scholar 

  19. Gopinath SCB, Anbu P, Hilda A (2005) Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46:119–126

    CAS  Article  Google Scholar 

  20. Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43(4):667–674

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68(5):2391–2396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Microbial Biotechnol 3(5):564–575

    CAS  Article  Google Scholar 

  23. Jørgensen H, Mørkeberg A, Krogh KBR, Olsson L (2005) Production of cellulase and hemicellulase by three Penicillium species: effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis. Enzyme Microb Technol 36(1):42–48

    Article  CAS  Google Scholar 

  24. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69(12):7210–7215

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282(1):44–51

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Kong H, Shimosaka M, Ando Y, Nishiyama K, Fujii T, Miyashita K (2001) Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol Ecol 37(2):135–141

    CAS  Article  Google Scholar 

  28. Krogh KBR, Morkeberg A, Jørgensen H, Frisvad JC, Olsson L (2004) Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 114(1–3):389–401

    Article  Google Scholar 

  29. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Hoboken, pp 115–175

    Google Scholar 

  30. Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microbial Technol 3(1):55–58

    CAS  Article  Google Scholar 

  31. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Mandels M, Weber J (1969) The production of cellulases. In: Hajny GJ, Reese ET (eds) Advances in chemistry, cellulases and their applications. American Chemical Society, Washington, pp 391–414

    Chapter  Google Scholar 

  33. Martins LF, Kolling D, Camassola M, Dillon AJP, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99(5):1417–1424

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Marumoto T, Shindo H, Higashi T (1978) Usefulness of simple condenser for determining organic carbon by the method of Tyulin. J Sci Soil Manure Jpn 49(3):250–252 (in Japanese)

    Google Scholar 

  35. Massa C, Clausen MH, Stojan J, Lamba D, Campa C (2007) Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia. Biochem J 407(2):207–217

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Matsuzawa H, Tanaka Y, Tamaki H, Kamagata Y, Mori K (2010) Culture-dependent and independent analyses of the microbial communities inhabiting the giant duckweed (Spirodela polyrrhiza) rhizoplane and isolation of a variety of rarely cultivated organisms within the phylum Verrucomicrobia. Microbes Environ 25(4):302–308

    PubMed  Article  PubMed Central  Google Scholar 

  37. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99(16):7553–7564

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Nilsson R, Kristiansson E, Ryberg M, Hallenberg N (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinfo 4:193–201

    Article  Google Scholar 

  40. Omura S, Takahashi Y, Iwai Y, Tanaka H (1982) Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 35(8):1013–1019

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Pardo AG, Forchiassin F (1998) Influence of different cultural conditions on cellulase production by Nectria catalinensis. Rev Argent Microbiol 30(1):20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Picart P, Diaz P, Pastor FIJ (2007) Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett Appl Microbiol 45(1):108–133

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Rasmussen LD, Zawadsky C, Binnerup SJ, Øregaard G, Sørensen SJ, Kroer N (2008) Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences. Appl Environ Microbiol 74(12):3795–3803

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Reese ET, Mandels M (1989) Rolling with the times: production and applications of Trichoderma reesei cellulase. Annual Rep Ferment Processes 7:1–20

    Google Scholar 

  45. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100(8):923–935

    Article  Google Scholar 

  47. Sarathchandra SU, Burch G, Cox NR (1997) Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl Soil Ecol 6(3):293–299

    Article  Google Scholar 

  48. Satomi M, Kimura B, Mizoi M, Satou T, Fujii T (1997) Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47(3):832–836

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Singh A, Kumar PK (1991) Fusarium oxysporum: status in bioethanol production. Crit Rev Biotechnol 11(2):129–147

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Slyter LL, Weaver JM (1971) Growth factor requirements of ruminal cellulolytic bacteria isolated from microbial populations supplied diets with or without rapidly fermentable carbohydrate. Appl Microbiol 22(5):930–932

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    CAS  Article  Google Scholar 

  52. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70(8):4748–4755

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44(3):347–354

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Tamaki H, Hanada H, Sekiguchi Y, Tanaka Y, Kamagata Y (2009) Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. Environ Microbiol 11(7):1827–1834

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126(1):26–36

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Wang Y, Zhang ZS, Ruan JS, Wang YM, Ali SM (1999) Investigation of actinomycete diversity in the tropical rainforests of Singapore. J Ind Microbiol Biotech 23(3):178–187

    CAS  Article  Google Scholar 

  58. Wang F, Li F, Chen G, Liu W (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164(4):650–657

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, New York, pp 315–522

    Google Scholar 

  60. Williams PP, Dinusson WE (1972) Composition of the ruminal flora and establishment of ruminal ciliated protozoal species in isolated calves. J Anim Sci 34(3):469–474

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99(24):15681–15686

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Meth Enzymol 397:124–130

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was funded by Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Fujii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujii, K., Kuwahara, A., Nakamura, K. et al. Development of a simple cultivation method for isolating hitherto-uncultured cellulase-producing microbes. Appl Microbiol Biotechnol 91, 1183–1192 (2011). https://doi.org/10.1007/s00253-011-3376-2

Download citation

Keywords

  • Cellulolytic microbe
  • Hitherto-uncultured strain
  • Exocellulase
  • Endocellulase
  • Xylanase
  • Laccase