Skip to main content

Advertisement

Log in

Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Terminal restriction fragment length polymorphism (T-RFLP) can be used to assess how land use management changes the dominant members of bacterial communities. We compared T-RFLP profiles obtained via amplification with forward primers (27, 63F) each coupled with the fluorescently labeled reverse primer (1392R) and multiple restriction enzymes to determine the best combination for interrogating soil bacterial populations in an agricultural soil used for potato production. Both primer pairs provide nearly universal recognition of a 1,400-bp sequence of the bacterial domain in the V1–V3 region of the 16S ribosomal RNA (rRNA) gene relative to known sequences. Labeling the reverse primer allowed for direct comparison of each forward primer and the terminal restriction fragments’ relative migration units obtained with each primer pair and restriction enzyme. Redundancy analysis (RDA) and nested multivariate analysis of variance (MANOVA) were used to assess the effects of primer pair and choice of restriction enzyme on the measured relative migration units. Our research indicates that the 63F–1392R amplimer pair provides a more complete description with respect to the bacterial communities present in this potato (Solanum tuberosum L.)–barley (Hordeum vulgare L.) rotation over seeded to crimson clover (Trifolium praense L.). Domain-specific 16S rRNA gene primers are rigorously tested to determine their ability to amplify across a target region of the gene. Yet, variability within or between T-RFLP profiles can result from factors independent of the primer pair. Therefore, researchers should use RDA and MANOVA analyses to evaluate the effects that additional laboratory and environmental variables have on bacterial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L (1996) The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55:541–555

    Article  CAS  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosius J, Dull TL, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  CAS  PubMed  Google Scholar 

  • Brunk CF, Avaniss-Aghjani E, Brunk CA (1996) A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl Environ Microbiol 62:872–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement BG, Kehl LE, DeBord KL, Kitts CL (1998) Terminal restriction fragment patterns (T-RFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J Microbiol Meth 31:135–142

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296

    Article  Google Scholar 

  • Colwell, RK (1997) User’s guide to estimate S5. Statistical estimation of species richness and shared species from samples. (http://www.viceroy.eeb.uconn.edu/estimates). Accessed 7 Jun 2011 and 28 Jan 2011

  • Dunbar J, Ticknor LO, Kuske CR (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66:2943–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. MC Genomics 7:1471–2164

    Google Scholar 

  • Engebretson JJ, Moyer CL (2003) Fidelity of select restriction endonuclease in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl Environ Microbiol 69:4823–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erich MS, Fitzgerald CB, Porter GA (2002) The effect of organic amendments on phosphorus chemistry in a potato cropping system. Agric Ecosyst Environ 88:79–88

    Article  CAS  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkiewicz JP, Kellogg CA (2008) Cross-kingdom amplification using bacteria-specific primers: complications for coral microbial ecology. Appl Environ Microbiol 74:7828–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MC, Tolker-Nielsen T, Givskov M, Molin S (1998) 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol Ecol 26:141–149

    Article  CAS  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70:565–569

    Article  CAS  PubMed  Google Scholar 

  • Junier P, Junier T, Witzel K-P (2008) TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl Environ Microbiol 74:6452–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69:6768–6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2009) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12(1):118–123

    Article  PubMed  Google Scholar 

  • Li L, Hsiao WWL, Nandakumar R, Barbuto SM, Mongodin EF, Paster BJ, Fraser-Liggett CM, Fouad AF (2010) Analyzing endodontic infections by deep coverage pyrosequencing. J Dent Res 89:980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327

    Article  CAS  PubMed  Google Scholar 

  • Marsh TL, Saxman P, Cole J, Tiedje JM (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66:3616–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills DK, Fitzgerald K, Litchfield CD, Gillevet PM (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods 54(1):57–74

    Article  CAS  PubMed  Google Scholar 

  • Muckian L, Grant R, Doyle E, Clipson N (2007) Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68:1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  • Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. J Microbial Ecol 53:562–570

    Article  CAS  Google Scholar 

  • Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol Ecol 60(2):1574–6941

    Article  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Meth 69(3):470–479

    Article  CAS  Google Scholar 

  • Smith CJ, Danoilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wick LY, Buchholz F, Fetzer I, Kleinsteuber S, Hartig C, Shi L, Miltner A, Harms H, Pucci GN (2010) Responses of soil microbial communities to weak electric fields. J Sci Tot 408(20):4886–4893

    Article  CAS  Google Scholar 

  • Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes—response at various levels of microbial community organization. Environ Pollut 152(3):576–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided from Congressional appropriations to the United States Department of Agriculture, Agriculture Research Service. The authors would like to thank Dr. Ronald Turco of Purdue University for his editorial advice and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Marie Fortuna.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortuna, AM., Marsh, T.L., Honeycutt, C.W. et al. Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism. Appl Microbiol Biotechnol 91, 1193–1202 (2011). https://doi.org/10.1007/s00253-011-3363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3363-7

Keywords

Navigation