Skip to main content
Log in

Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cysteine desulfurases are pyridoxal 5′-phosphate-dependent homodimeric enzymes that catalyze the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. The enzymes are capable of donating the persulfide sulfur atoms to a variety of biosynthetic pathways for sulfur-containing biofactors, such as iron–sulfur clusters, thiamin, transfer RNA thionucleosides, biotin, and lipoic acid. The enormous advances in biochemical and structural studies of these biosynthetic pathways over the past decades provide an opportunity for detailed understanding of the nature of the excellent sulfur transfer mechanism of cysteine desulfurases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 6
Scheme 6

Similar content being viewed by others

References

  • Adam AC, Bornhövd C, Prokisch H, Neupert W, Hell K (2006) The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J 25:174–183

    Article  CAS  PubMed  Google Scholar 

  • Adinolfi S, Iannuzzi C, Prischi F, Pastore C, Iametti S, Martin SR, Bonomi F, Pastore A (2009) Bacterial frataxin CyaY is the gatekeeper of iron–sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol 16:390–396

    Article  CAS  PubMed  Google Scholar 

  • Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry 39:7856–7862

    Article  CAS  PubMed  Google Scholar 

  • Albrecht AG, Netz DJ, Miethke M, Pierik AJ, Burghaus O, Peuckert F, Lill R, Marahiel MA (2010) SufU is an essential iron–sulfur cluster scaffold protein in Bacillus subtilis. J Bacteriol 192:1643–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B (2008) NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Pilon M (2011) Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends Plant Sci 16:218–226. doi:https://doi.org/10.1016/j.tplants.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Naik SG, O'Carroll IP, Huynh BH, Dean DR, Johnson MK, Dos Santos PC (2008) A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron–sulfur cluster carrier. J Biol Chem 283:14092–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon AP, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, Xi J (1999) Thiamin biosynthesis in prokaryotes. Arch Microbiol 171:293–300

    Article  CAS  PubMed  Google Scholar 

  • Behshad E, Parkin SE, Bollinger JM Jr (2004) Mechanism of cysteine desulfurase Slr0387 from Synechocystis sp. PCC 6803: kinetic analysis of cleavage of the persulfide intermediate by chemical reductants. Biochemistry 43:12220–12226

    Article  CAS  PubMed  Google Scholar 

  • Behshad E, Bollinger JM Jr (2009) Kinetic analysis of cysteine desulfurase CD0387 from Synechocystis sp. PCC 6803: formation of the persulfide intermediate. Biochemistry 48:12014–12023

    Article  CAS  PubMed  Google Scholar 

  • Beinert H (2000) Iron–sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DE, Leonard NJ (1972) Structure of the borohydride reduction product of photolinked 4-thiouracil and cytosine. Fluorescent probe of transfer ribonucleic acid tertiary structure. J Am Chem Soc 94:6178–6182

    Article  CAS  PubMed  Google Scholar 

  • Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303:76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beynon J, Ally A, Cannon M, Cannon F, Jacobson M, Cash V, Dean D (1987) Comparative organization of nitrogen fixation-specific genes from Azotobacter vinelandii and Klebsiella pneumoniae: DNA sequence of the nifUSV genes. J Bacteriol 169:4024–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y, Elsässer HP, Lill R (2006) Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol Cell Biol 26:5675–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonomi F, Iametti S, Ta D, Vickery LE (2005) Multiple turnover transfer of [2Fe2S] clusters by the iron–sulfur cluster assembly scaffold proteins IscU and IscA. J Biol Chem 280:29513–29518

    Article  CAS  PubMed  Google Scholar 

  • Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE (2008) Studies on the mechanism of catalysis of iron–sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry 47:12795–12801

    Article  CAS  PubMed  Google Scholar 

  • Broach RB, Jarrett JT (2006) Role of the [2Fe-2S]2+ cluster in biotin synthase: mutagenesis of the atypical metal ligand arginine 260. Biochemistry 45:14166–14174

    Article  CAS  PubMed  Google Scholar 

  • Cavazza C, Contreras-Martel C, Pieulle L, Chabrière E, Hatchikian EC, Fontecilla-Camps JC (2006) Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate. Structure 14:217–224

    Article  CAS  PubMed  Google Scholar 

  • Chahal HK, Dai Y, Saini A, Ayala-Castro C, Outten FW (2009) The SufBCD Fe–S scaffold complex interacts with SufA for Fe–S cluster transfer. Biochemistry 48:10644–10653

    Article  CAS  PubMed  Google Scholar 

  • Challand MR, Martins FT, Roach PL (2010) Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli. J Biol Chem 285:5240–5248

    Article  CAS  PubMed  Google Scholar 

  • Chandramouli K, Johnson MK (2006) HscA and HscB stimulate [2Fe–2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45:11087–11095

    Article  CAS  PubMed  Google Scholar 

  • Chandramouli K, Unciuleac MC, Naik S, Dean DR, Huynh BH, Johnson MK (2007) Formation and properties of [4Fe–4S] clusters on the IscU scaffold protein. Biochemistry 46:6804–6811

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Han X, McLafferty FW, Begley TP (2006) Biosynthesis of thiamin thiazole: determination of the regiochemistry of the S/O acyl shift by using 1,4-dideoxy-D-xylulose-5-phosphate. Angew Chem Int Ed Engl 45:3507–3510

    Article  CAS  PubMed  Google Scholar 

  • Cicchillo RM, Lee KH, Baleanu-Gogonea C, Nesbitt NM, Krebs C, Booker SJ (2004) Escherichia coli lipoyl synthase binds two distinct [4Fe–4S] clusters per polypeptide. Biochemistry 43:11770–11781

    Article  CAS  PubMed  Google Scholar 

  • Cicchillo RM, Booker SJ (2005) Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc 127:2860–2861

    Article  CAS  PubMed  Google Scholar 

  • Cupp-Vickery JR, Urbina H, Vickery LE (2003) Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J Mol Biol 330:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342:1265–1278

    Article  CAS  PubMed  Google Scholar 

  • Desnoyers G, Morissette A, Prévost K, Massé E (2009) Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J 28:1551–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos PC, Johnson DC, Ragle BE, Unciuleac MC, Dean DR (2007) Controlled expression of nif and isc iron–sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dos Santos PC, Dean DR (2008) A newly discovered role for iron–sulfur clusters. Proc Natl Acad Sci USA 105:11589–11590

    Article  PubMed  PubMed Central  Google Scholar 

  • Douglas P, Kriek M, Bryant P, Roach PL (2006) Lipoyl synthase inserts sulfur atoms into an octanoyl substrate in a stepwise manner. Angew Chem Int Ed Engl 45:5197–5199

    Article  CAS  PubMed  Google Scholar 

  • Drennan CL, Peters JW (2003) Surprising cofactors in metalloenzymes. Curr Opin Struct Biol 13:220–226

    Article  CAS  PubMed  Google Scholar 

  • Eccleston JF, Petrovic A, Davis CT, Rangachari K, Wilson RJ (2006) The kinetic mechanism of the SufC ATPase: the cleavage step is accelerated by SufB. J Biol Chem 281:8371–8378

    Article  CAS  PubMed  Google Scholar 

  • Esaki N, Nakamura T, Tanaka H, Soda K (1982) Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem 257:4386–4391

    CAS  PubMed  Google Scholar 

  • Favre A, Yaniv M, Michelson AM (1969) The photochemistry of 4-thiouridine in Escherichia coli t-RNA Val1 . Biochem Biophys Res Commun 37:266–271

    Article  CAS  PubMed  Google Scholar 

  • Favre A, Michelson AM, Yaniv M (1971) Photochemistry of 4-thiouridine in Escherichia coli transfer RNA Val1 . J Mol Biol 58:367–379

    Article  CAS  PubMed  Google Scholar 

  • Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe–S cluster of dihydroxy-acid dehydratase. J Biol Chem 271:16068–16074

    Article  CAS  PubMed  Google Scholar 

  • Frey PA, Hegeman AD, Ruzicka FJ (2008) The Radical SAM Superfamily. Crit Rev Biochem Mol Biol 43:63–88

    Article  CAS  PubMed  Google Scholar 

  • Fuezery AK, Oh JJ, Ta DT, Vickery LE, Markley JL (2011) Three hydrophobic amino acids in Escherichia coli HscB make the greatest contribution to the stability of the HscB-IscU complex. BMC Biochem 12:3

    Article  CAS  Google Scholar 

  • Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ (2006) IscR-dependent gene expression links iron–sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60:1058–1075

    Article  CAS  PubMed  Google Scholar 

  • Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 4:1291–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Sendra M, Naik SG, Chahal HK, Huynh BH, Outten FW, Fontecave M, Ollagnier de Choudens S (2009) Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe–2S] protein and acts as an Fe–S transporter to Fe–S target enzymes. J Am Chem Soc 131:6149–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández HL, Pierrel F, Elleingand E, Garcia-Serres R, Huynh BH, Johnson MK, Fontecave M, Atta M (2007) MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46:5140–5147

    Article  PubMed  CAS  Google Scholar 

  • Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367

    Article  CAS  PubMed  Google Scholar 

  • Hoff KG, Ta DT, Tapley TL, Silberg JJ, Vickery LE (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron–sulfur cluster template protein IscU. J Biol Chem 277:27353–27359

    Article  CAS  PubMed  Google Scholar 

  • Hoff KG, Cupp-Vickery JR, Vickery LE (2003) Contributions of the LPPVK motif of the iron–sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. J Biol Chem 278:37582–37589

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57

    Article  CAS  PubMed  Google Scholar 

  • Jameson GN, Cosper MM, Hernández HL, Johnson MK, Huynh BH (2004) Role of the [2Fe–2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43:2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Imlay JA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron–sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron–sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser JT, Clausen T, Bourenkow GP, Bartunik HD, Steinbacher S, Huber R (2000) Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly. J Mol Biol 297:451–464

    Article  CAS  PubMed  Google Scholar 

  • Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron–sulfur clusters. Biochemistry 40:11007–11012

    Article  CAS  PubMed  Google Scholar 

  • Kambampati R, Lauhon CT (2000) Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem 275:10727–10730

    Article  CAS  PubMed  Google Scholar 

  • Kambampati R, Lauhon CT (2003) MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Mihara H, Kurihara T, Yoshimura T, Esaki N (2000) Gene cloning, purification, and characterization of two cyanobacterial NifS homologs driving iron–sulfur cluster formation. Biosci Biotechnol Biochem 64:2412–2419

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T, Esaki N (2002) Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron–sulfur cluster assembly. Proc Natl Acad Sci USA 99:5948–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Füzéry AK, Tonelli M, Ta DT, Westler WM, Vickery LE, Markley JL (2009) Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Biochemistry 48:6062–6071

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Wright F, Flint HJ (1998) A cysteine desulphurase gene from the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Biochim Biophys Acta 1386:233–237

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Papenbrock J (2005) Iron–sulfur cluster biosynthesis in photosynthetic organisms. Photosynth Res 86:391–407

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka S, Wada K, Hasegawa Y, Minami Y, Fukuyama K, Takahashi Y (2006) Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron–sulfur cluster assembly machinery. FEBS Lett 580:137–143

    Article  CAS  PubMed  Google Scholar 

  • Kolman C, Söll D (1993) SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. J Bacteriol 175:1433–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer GF, Baker JC, Ames BN (1988) Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response. J Bacteriol 170:2344–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK (2001) IscA, an alternate scaffold for Fe–S cluster biosynthesis. Biochemistry 40:14069–14080

    Article  CAS  PubMed  Google Scholar 

  • Kriek M, Martins F, Challand MR, Croft A, Roach PL (2007a) Thiamine biosynthesis in Escherichia coli: identification of the intermediate and by-product derived from tyrosine. Angew Chem Int Ed Engl 46:9223–9226

    Article  CAS  PubMed  Google Scholar 

  • Kriek M, Martins F, Leonardi R, Fairhurst SA, Lowe DJ, Roach PL (2007b) Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. J Biol Chem 282:17413–17423

    Article  CAS  PubMed  Google Scholar 

  • Kurihara T, Mihara H, Kato S, Yoshimura T, Esaki N (2003) Assembly of iron–sulfur clusters mediated by cysteine desulfurases, IscS, CsdB and CSD, from Escherichia coli. Biochim Biophys Acta 1647:303–309

    Article  CAS  PubMed  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land T, Rouault TA (1998) Targeting of a human iron–sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2:807–815

    Article  CAS  PubMed  Google Scholar 

  • Lauhon CT, Kambampati R (2000) The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem 275:20096–20103

    Article  CAS  PubMed  Google Scholar 

  • Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M (2006) Iron–sulfur cluster biosynthesis: characterization of Escherichia coli CYaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU. J Biol Chem 281:16256–16263

    Article  CAS  PubMed  Google Scholar 

  • Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW (2007) SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem 282:13342–13350

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yeo WS, Roe JH (2004) Induction of the sufA operon encoding Fe–S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Yeo WS, Roe JH (2008) Oxidant-responsive induction of the suf operon, encoding a Fe–S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190:8244–8247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leimkühler S, Rajagopalan KV (2001) A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem 276:22024–22031

    Article  PubMed  Google Scholar 

  • Léon S, Touraine B, Briat JF, Lobréaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366:557–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonardi R, Roach PL (2004) Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 279:17054–17062

    Article  CAS  PubMed  Google Scholar 

  • Leong-Morgenthaler P, Oliver SG, Hottinger H, Söll D (1994) A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation. Biochimie 76:45–49

    Article  CAS  PubMed  Google Scholar 

  • Li K, Tong WH, Hughes RM, Rouault TA (2006) Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron–sulfur cluster assembly. J Biol Chem 281:12344–12351

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Mühlenhoff U (2008) Maturation of iron–sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700

    Article  CAS  PubMed  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:831–838

    Article  CAS  PubMed  Google Scholar 

  • Loiseau L, Ollagnier-de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F (2005) Analysis of the heteromeric CsdA–CsdE cysteine desulfurase, assisting Fe–S cluster biogenesis in Escherichia coli. J Biol Chem 280:26760–26769

    Article  CAS  PubMed  Google Scholar 

  • Loiseau L, Gerez C, Bekker M, Ollagnier-de Choudens S, Py B, Sanakis Y, Teixeira de Mattos J, Fontecave M, Barras F (2007) ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 104:13626–13631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marelja Z, Stöcklein W, Nimtz M, Leimkühler S (2008) A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J Biol Chem 283:25178–25185

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N (1997) Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J Biol Chem 272:22417–22424

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Maeda M, Fujii T, Kurihara T, Hata Y, Esaki N (1999) A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary x-ray crystallographic studies. J Biol Chem 274:14768–14772

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Kurihara T, Yoshimura T, Esaki N (2000a) Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions. J Biochem 127:559–567

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Kurihara T, Watanabe T, Yoshimura T, Esaki N (2000b) cDNA cloning, purification, and characterization of mouse liver selenocysteine lyase. Candidate for selenium delivery protein in selenoprotein synthesis. J Biol Chem 275:6195–6200

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Esaki N (2002) Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60:12–23

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Fujii T, Kato S, Kurihara T, Hata Y, Esaki N (2002) Structure of external aldimine of Escherichia coli CsdB, an IscS/NifS homolog: implications for its specificity toward selenocysteine. J Biochem 131:679–685

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M (2006) The asymmetric IscA homodimer with an exposed [2Fe–2S] cluster suggests the structural basis of the Fe–S cluster biosynthetic scaffold. J Mol Biol 360:117–132

    Article  CAS  PubMed  Google Scholar 

  • Mueller EG, Palenchar PM, Buck CJ (2001) The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J Biol Chem 276:33588–33595

    Article  CAS  PubMed  Google Scholar 

  • Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R (2004) Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J Biol Chem 279:36906–36915

    Article  PubMed  CAS  Google Scholar 

  • Mulligan ME, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. J Biol Chem 264:19200–19207

    CAS  PubMed  Google Scholar 

  • Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 284:30200–30208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H (2007) Thio modification of yeast cytosolic tRNA is an iron–sulfur protein-dependent pathway. Mol Cell Biol 27:2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai Y, Nakai M, Hayashi H (2008) Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 283:27469–27476

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Saeki K, Takahashi Y (1999) Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster. J Biochem 126:10–18

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Stöcklein W, Walburger A, Magalon A, Leimkühler S (2007) Identification of a Rhodobacter capsulatusL-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase. Biochemistry 46:9586–9595

    Article  CAS  PubMed  Google Scholar 

  • Numata T, Fukai S, Ikeuchi Y, Suzuki T, Nureki O (2006a) Structural basis for sulfur relay to RNA mediated by heterohexameric TusBCD complex. Structure 14:357–366

    Article  CAS  PubMed  Google Scholar 

  • Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O (2006b) Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442:419–424

    Article  CAS  PubMed  Google Scholar 

  • Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004) SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe–S] cluster assembly. J Biol Inorg Chem 9:828–838

    Article  CAS  PubMed  Google Scholar 

  • Olson JW, Agar JN, Johnson MK, Maier RJ (2000) Characterization of the NifU and NifS Fe–S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39:16213–16219

    Article  CAS  PubMed  Google Scholar 

  • Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N (2010) Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase. J Biol Chem 285:12133–12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outten FW, Wood MJ, Muñoz FM, Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 278:45713–45719

    Article  CAS  PubMed  Google Scholar 

  • Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872

    Article  CAS  PubMed  Google Scholar 

  • Palenchar PM, Buck CJ, Cheng H, Larson TJ, Mueller EG (2000) Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J Biol Chem 275:8283–8286

    Article  CAS  PubMed  Google Scholar 

  • Pastore C, Adinolfi S, Huynen MA, Rybin V, Martin S, Mayer M, Bukau B, Pastore A (2006) YfhJ, a molecular adaptor in iron–sulfur cluster formation or a frataxin-like protein? Structure 14:857–867

    Article  CAS  PubMed  Google Scholar 

  • Patzer SI, Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli. J Bacteriol 181:3307–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic A, Davis CT, Rangachari K, Clough B, Wilson RJ, Eccleston JF (2008) Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction with fluorescent adenosine nucleotides. Protein Sci 17:1264–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrel F, Björk GR, Fontecave M, Atta M (2002) Enzymatic modification of tRNAs: MiaB is an iron–sulfur protein. J Biol Chem 277:13367–13370

    Article  CAS  PubMed  Google Scholar 

  • Pierrel F, Douki T, Fontecave M, Atta M (2004) MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl M, Sprenger GA, Müller M (2004) A new perspective on thiamine catalysis. Curr Opin Biotechnol 15:335–342

    Article  CAS  PubMed  Google Scholar 

  • Py B, Barras F (2010) Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol 8:436–446

    Article  CAS  PubMed  Google Scholar 

  • Raulfs EC, O'Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR (2008) In vivo iron–sulfur cluster formation. Proc Natl Acad Sci USA 105:8591–8596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees DC (2002) Great metalloclusters in enzymology. Annu Rev Biochem 71:221–246

    Article  CAS  PubMed  Google Scholar 

  • Reyda MR, Dippold R, Dotson ME, Jarrett JT (2008) Loss of iron–sulfur clusters from biotin synthase as a result of catalysis promotes unfolding and degradation. Arch Biochem Biophys 471:32–41

    Article  CAS  PubMed  Google Scholar 

  • Reyda MR, Fugate CJ, Jarrett JT (2009) A complex between biotin synthase and the iron–sulfur cluster assembly chaperone HscA that enhances in vivo cluster assembly. Biochemistry 48:10782–10792

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8:42–46

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Bettache A, Janicki A, Vinella D, Zhang CC, Latifi A (2010) The alr2505 (osiS) gene from Anabaena sp. strain PCC7120 encodes a cysteine desulfurase induced by oxidative stress. FEBS J 277:3715–3725

    Article  CAS  PubMed  Google Scholar 

  • Schilke B, Voisine C, Beinert H, Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:10206–10211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe–S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ (2001) IscR, an Fe–S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe–S cluster assembly proteins. Proc Natl Acad Sci USA 98:14895–14900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647

    Article  CAS  PubMed  Google Scholar 

  • Selbach B, Earles E, Dos Santos PC (2010) Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis. Biochemistry 49:8794–8802

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M (2010) Structural basis for Fe–S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions. PLoS Biol 8:e1000354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimomura Y, Takahashi Y, Kakuta Y, Fukuyama K (2005) Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron–sulfur clusters. Proteins 60:566–569

    Article  CAS  PubMed  Google Scholar 

  • Silberg JJ, Tapley TL, Hoff KG, Vickery LE (2004) Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron–sulfur cluster assembly protein IscU. J Biol Chem 279:53924–53931

    Article  CAS  PubMed  Google Scholar 

  • Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) Sulfur transfer from IscS to IscU: the first step in iron–sulfur cluster biosynthesis. J Am Chem Soc 123:11103–11104

    Article  CAS  PubMed  Google Scholar 

  • Smith AD, Frazzon J, Dean DR, Johnson MK (2005a) Role of conserved cysteines in mediating sulfur transfer from IscS to IscU. FEBS Lett 579:5236–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AD, Jameson GN, Dos Santos PC, Agar JN, Naik S, Krebs C, Frazzon J, Dean DR, Huynh BH, Johnson MK (2005b) NifS-mediated assembly of [4Fe–4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry 44:12955–12969

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MA, Cannon JF, Webb FH, Bock RM (1985) Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol 161:368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Setlow P (1993) Cloning, nucleotide sequence, and regulation of the Bacillus subtilis nadB gene and a nifS-like gene, both of which are essential for NAD biosynthesis. J Bacteriol 175:1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Nakamura M (1999) Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J Biochem 126:917–926

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383

    Article  CAS  PubMed  Google Scholar 

  • Tan G, Lu J, Bitoun JP, Huang H, Ding H (2009) IscA/SufA paralogues are required for the [4Fe–4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochem J 420:463–472

    Article  CAS  PubMed  Google Scholar 

  • Tapley TL, Vickery LE (2004) Preferential substrate binding orientation by the molecular chaperone HscA. J Biol Chem 279:28435–28442

    Article  CAS  PubMed  Google Scholar 

  • Taylor SV, Kelleher NL, Kinsland C, Chiu HJ, Costello CA, Backstrom AD, McLafferty FW, Begley TP (1998) Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem 273:16555–16560

    Article  CAS  PubMed  Google Scholar 

  • Thomas G, Favre A (1975) 4-Thiouridine as the target for near-ultraviolet light induced growth delay in Escherichia coli. Biochem Biophys Res Commun 66:1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Tirupati B, Vey JL, Drennan CL, Bollinger JM Jr (2004) Kinetic and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry 43:12210–12219

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto U, Takahashi Y (2001) Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron–sulfur proteins. J Biochem 130:63–71

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto U, Kitamura S, Fukuyama K, Takahashi Y (2004) Interchangeability and distinct properties of bacterial Fe–S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J Biochem 136:199–209

    Article  CAS  PubMed  Google Scholar 

  • Trotter V, Vinella D, Loiseau L, Ollagnier de Choudens S, Fontecave M, Barras F (2009) The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new sulphur transfer pathway by recruiting CsdL (ex-YgdL), a ubiquitin-modifying-like protein. Mol Microbiol 74:1527–1542

    Article  CAS  PubMed  Google Scholar 

  • Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BH, Johnson MK, Dean DR (2007) In vitro activation of apo-aconitase using a [4Fe–4S] cluster-loaded form of the IscU [Fe–S] cluster scaffolding protein. Biochemistry 46:6812–6821

    Article  CAS  PubMed  Google Scholar 

  • Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem 276:44521–44526

    Article  CAS  PubMed  Google Scholar 

  • Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Björk GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M, Pilon-Smits EA (2007) Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 104:5686–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickery LE, Cupp-Vickery JR (2007) Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron–sulfur protein maturation. Crit Rev Biochem Mol Biol 42:95–111

    Article  CAS  PubMed  Google Scholar 

  • Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F (2009) Iron–sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5:e1000497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Huang H, Tan G, Si F, Liu M, Landry AP, Lu J, Ding H (2010) In vivo evidence for the iron-binding activity of an iron–sulfur cluster assembly protein IscA in Escherichia coli. Biochem J 432:429–436

    Article  CAS  PubMed  Google Scholar 

  • Waterman DG, Ortiz-Lombardia M, Fogg MJ, Koonin EV, Antson AA (2006) Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain. J Mol Biol 356:97–110

    Article  CAS  PubMed  Google Scholar 

  • Webb E, Claas K, Downs DM (1997) Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J Bacteriol 179:4399–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollers S, Layer G, Garcia-Serres R, Signor L, Clemancey M, Latour JM, Fontecave M, Ollagnier de Choudens S (2010) Iron–sulfur (Fe–S) cluster assembly: the SufBCD complex is a new type of Fe–S scaffold with a flavin redox cofactor. J Biol Chem 285:23331–23341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuebbens MM, Rajagopalan KV (2003) Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278:14523–14532

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP (2001) Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein-protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc Natl Acad Sci USA 98:8513–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Bitoun JP, Ding H (2006) Interplay of IscA and IscU in biogenesis of iron–sulfur clusters. J Biol Chem 281:27956–27963

    Article  CAS  PubMed  Google Scholar 

  • Yeo WS, Lee JH, Lee KC, Roe JH (2006) IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe–S assembly proteins. Mol Microbiol 61:206–218

    Article  CAS  PubMed  Google Scholar 

  • Zafrilla B, Martínez-Espinosa RM, Esclapez J, Pérez-Pomares F, Bonete MJ (2010) SufS protein from Haloferax volcanii involved in Fe–S cluster assembly in haloarchaea. Biochim Biophys Acta 1804:1476–1482

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Urban A, Mihara H, Leimkühler S, Kurihara T, Esaki N (2010) IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in Escherichia coli. J Biol Chem 285:2302–2308

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, White RH, Cash VL, Dean DR (1994) Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33:4714–4720

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Esaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidese, R., Mihara, H. & Esaki, N. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 91, 47–61 (2011). https://doi.org/10.1007/s00253-011-3336-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3336-x

Keywords

Navigation