Skip to main content
Log in

β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A recombinant Saccharomyces cerevisiae strain was used for the production of β-carotene. The episomal plasmid YEplac195YB/I/E was extended by a gene coding for the mevalonate kinase (mvaK1) from Staphylococcus aureus. The adh1 promoter was chosen for constitutive expression of mvaK1. The recombinant strain S. cerevisiae G175 (YEplac-CaroSA) synthesised β-carotene by expressing the carotenogenic genes of Xanthophyllomyces dendrorhous together with the mvaK1 gene. Cells of this strain were investigated for their carotenoid contents in YNB and YPD media. A corresponding mvaK1 transcript in the recombinant yeast host was verified. Growth experiments of a specific erg12 deletion mutant showed that the mevalonate kinase (MvaK1) was able to complement the function of the deleted native mevalonate kinase (Erg12) from S. cerevisiae in the MVA pathway under control of the constitutive adh1 promoter. Cells of S. cerevisiae G175 (YEplac-CaroSA) exhibited high plasmid stability under either selective or non-selective cultivation conditions. Time course experiments demonstrated high plasmid stability even over extended cultivation periods. Carotenoid production was therefore also stable in larger culture volumes. Due to the stability of the plasmid, cultivation of the cells in complex YPD medium was possible, and 14.3 mg β-carotene per litre and a cell density of 9 g cell dry matter (CDM) per litre were achieved. The highest amount of 3,897 μg β-carotene per gramme CDM at a cell density of 1 g CDM per litre was measured after cultivation of the cells in YNB medium with glucose as sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong GA, Alberti M, Leach F, Hearst JE (1989) Nucleotide sequence, organization and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216:254–268

    Article  CAS  Google Scholar 

  • Armstrong GA, Alberti M, Hearst JE (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci U S A 87:9975–9979

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids volume 1a: isolation and analysis. Birkhäuser, Basel, Switzerland

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook, 1st edn. Birkhäuser, Basel, Switzerland

    Book  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387:67–73

    Article  CAS  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  Google Scholar 

  • Futcher AB, Cox BS (1984) Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol 157:283–290

    Article  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth Enzymol 350:87–96

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  Google Scholar 

  • Huang B, Guo J, Yi B, Yu X, Sun L, Chen W (2008) Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett 30:1121–1137

    Article  CAS  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  Google Scholar 

  • Kroll J, Steinle A, Reichelt R, Ewering C, Steinbüchel A (2009) Establishment of a novel anabolism-based addiction system with an artificially introduced mevalonate pathway: complete stabilization of plasmids as universal application in white biotechnology. Metab Eng 11:168–177

    Article  CAS  Google Scholar 

  • Kroll J, Klinter S, Schneider C, Voß I, Steinbüchel A (2010) Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 3:634–657

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Biol 50:47–65

    Article  CAS  Google Scholar 

  • Liu GN, Zhu YH, Jiang JG (2009) The metabolomics of carotenoids in engineered cell factory. Appl Microbiol Biotechnol 83:989–999

    Article  CAS  Google Scholar 

  • Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167

    Article  CAS  Google Scholar 

  • Mewes HW, Albermann K, Bahr M, Frishman D, Gleissner A, Hani J, Heumann K, Kleine K, Maierl A, Oliver SG, Pfeiffer F, Zollner A (1997) Overview of the yeast genome. Nature 387:7–65

    Article  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    Article  CAS  Google Scholar 

  • Misawa N, Yamano S, Ikenaga H (1991) Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol 57:1847–1849

    Article  CAS  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    Article  CAS  Google Scholar 

  • Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964

    Article  CAS  Google Scholar 

  • Primrose SB, Ehrlich SD (1981) Isolation of plasmid deletion mutants and study of their instability. Plasmid 6:193–201

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd edition. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  CAS  Google Scholar 

  • Scholz M, Lipinski M, Leupold M, Luftmann H, Harig L, Ofir R, Fischer R, Prüfer D, Müller KJ (2009) Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70:517–522

    Article  CAS  Google Scholar 

  • Ugolini S, Tosato V, Bruschi CV (2002) Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae. Plasmid 47:94–107

    Article  CAS  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75:7205–7211

    Article  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  Google Scholar 

  • Voynova NE, Rios SE, Miziorko HM (2004) Staphylococcus aureus mevalonate kinase: isolation and characterization of an enzyme of the isoprenoid biosynthetic pathway. J Bacteriol 186:61–67

    Article  CAS  Google Scholar 

  • Vu VH, Kim K (2009) High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor. J Microbiol Biotechnol 19:1603–1611

    Article  CAS  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. John Wiley & Sons, New York, USA

    Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  CAS  Google Scholar 

  • Yoon S, Park H, Kim J, Lee S, Choi M, Kim J, Oh D, Keasling JD, Kim S (2007) Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23:599–605

    Article  CAS  Google Scholar 

  • Yoon S, Lee S, Das A, Ryu H, Jang H, Kim J, Oh D, Keasling JD, Kim S (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol 140:218–226

    Article  CAS  Google Scholar 

  • Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rene Verwaal (DSM Biotechnology Centre, Delft, The Netherlands) for the generous provision of the yeast plasmids for β-carotene production. We thank Roland Klassen and Friedhelm Meinhardt (Institut für Molekulare Mikrobiologie und Biotechnologie, Münster, Germany) for providing vector pUG73 and Kai Müller (Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie, Aachen, Germany) for providing vector PADNsβAS1. We also thank M. Gustavsson, E. Wiberg, P. Stolt and S. Stymne (Scandinavian Biotechnology Research, Alnarp, Sweden) for providing S. cerevisiae G175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, N., Steinbüchel, A. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91, 1611–1622 (2011). https://doi.org/10.1007/s00253-011-3315-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3315-2

Keywords

Navigation