Applied Microbiology and Biotechnology

, Volume 91, Issue 2, pp 425–434 | Cite as

A diverse bacterial community in an anoxic quinoline-degrading bioreactor determined by using pyrosequencing and clone library analysis

  • Xiaojun Zhang
  • Siqing Yue
  • Huihui Zhong
  • Weiying Hua
  • Ruijia Chen
  • Youfang Cao
  • Liping Zhao
Environmental Biotechnology


There is a concern of whether the structure and diversity of a microbial community can be effectively revealed by short-length pyrosequencing reads. In this study, we performed a microbial community analysis on a sample from a high-efficiency denitrifying quinoline-degrading bioreactor and compared the results generated by pyrosequencing with those generated by clone library technology. By both technologies, 16S rRNA gene analysis indicated that the bacteria in the sample were closely related to, for example, Proteobacteria, Actinobacteria, and Bacteroidetes. The sequences belonging to Rhodococcus were the most predominant, and Pseudomonas, Sphingomonas, Acidovorax, and Zoogloea were also abundant. Both methods revealed a similar overall bacterial community structure. However, the 622 pyrosequencing reads of the hypervariable V3 region of the 16S rRNA gene revealed much higher bacterial diversity than the 130 sequences from the full-length 16S rRNA gene clone library. The 92 operational taxonomic unit (OTUs) detected using pyrosequencing belonged to 45 families, whereas the 37 OTUs found in the clone library belonged to 25 families. Most sequences obtained from the clone library had equivalents in the pyrosequencing reads. However, 64 OTUs detected by pyrosequencing were not represented in the clone library. Our results demonstrate that pyrosequencing of the V3 region of the 16S rRNA gene is not only a powerful tool for discovering low-abundance bacterial populations but is also reliable for dissecting the bacterial community structure in a wastewater environment.


Quinoline degradation Microbial community Pyrosequencing Clone library 16S rRNA gene 



The work was financially supported by project 20677041 sponsored by NSFC, the National “863” High-Tech R&D Program (2007AA021301, 2009AA02Z310), and the Shanghai Leading Academic Discipline Project (B203).


  1. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836CrossRefGoogle Scholar
  2. Andersson AF, Riemann L, Bertilsson S (2010) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4:171–181CrossRefGoogle Scholar
  3. Bibby K, Viau E, Peccia J (2010) Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44:4252–4260CrossRefGoogle Scholar
  4. Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A (2005) Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol 71:2145–2153CrossRefGoogle Scholar
  5. Collins G, Kavanagh S, McHugh S, Connaughton S, Kearney A, Rice O, Carrigg C, Scully C, Bhreathnach N, Mahony T, Madden P, Enright AM, O’Flaherty V (2006) Accessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:897–922Google Scholar
  6. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399CrossRefGoogle Scholar
  7. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280CrossRefGoogle Scholar
  8. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199Google Scholar
  9. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432Google Scholar
  10. Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, Li K, Rogers YH, Strausberg R, Sutton G, Tallon L, Thomas T, Venter E, Frazier M, Venter JC (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103:11240–11245CrossRefGoogle Scholar
  11. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9.
  12. Huber JA, Morrison HG, Huse SM, Neal PR, Sogin ML, Mark Welch DB (2009) Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ Microbiol 11:1292–1302CrossRefGoogle Scholar
  13. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255CrossRefGoogle Scholar
  14. Johansen SS, Arvin E, Mosbaek H, Hansen AB (1997) Degradation pathway of quinolines in a biofilm system under denitrifying conditions. Environ Toxicol Chem 16:1821–1828CrossRefGoogle Scholar
  15. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453CrossRefGoogle Scholar
  16. Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42:4578–4588CrossRefGoogle Scholar
  17. Krober M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49CrossRefGoogle Scholar
  18. LaPara TM, Nakatsu CH, Pantea L, Alleman JE (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959CrossRefGoogle Scholar
  19. Li Y, Wang L, Liao L, Sun L, Zheng G, Luan J, Gu G (2010) Nitrate-dependent biodegradation of quinoline, isoquinoline, and 2-methylquinoline by acclimated activated sludge. J Hazard Mater 173:151–158CrossRefGoogle Scholar
  20. Liu B, Zhang F, Feng X, Liu Y, Yan X, Zhang X, Wang L, Zhao L (2006) Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiol Ecol 55:274–286CrossRefGoogle Scholar
  21. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120CrossRefGoogle Scholar
  22. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:e120CrossRefGoogle Scholar
  23. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefGoogle Scholar
  24. Mao Y, Zhang X, Yan X, Liu B, Zhao L (2008) Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J Microbiol Methods 75:231–236CrossRefGoogle Scholar
  25. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, Bushman FD (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4:e20CrossRefGoogle Scholar
  26. McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392CrossRefGoogle Scholar
  27. Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572CrossRefGoogle Scholar
  28. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  29. Nasidze I, Quinque D, Li J, Li M, Tang K, Stoneking M (2009) Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches. Anal Biochem 391:64–68CrossRefGoogle Scholar
  30. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290Google Scholar
  31. Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16CrossRefGoogle Scholar
  32. Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ Microbiol 75:1688–1696CrossRefGoogle Scholar
  33. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506CrossRefGoogle Scholar
  34. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526CrossRefGoogle Scholar
  35. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120CrossRefGoogle Scholar
  36. Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417CrossRefGoogle Scholar
  37. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223CrossRefGoogle Scholar
  38. Wang JL, Wu WZ, Zhao X (2004) Microbial degradation of quinoline: kinetics study with Burkholderia picekttii. Biomed Environ Sci 17:21–26Google Scholar
  39. Wojnowska-Baryla I, Cydzik-Kwiatkowska A, Zielinska M (2010) The application of molecular techniques to the study of wastewater treatment systems. Methods Mol Biol 599:157–183Google Scholar
  40. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227–5236CrossRefGoogle Scholar
  41. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4:232–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiaojun Zhang
    • 1
    • 2
  • Siqing Yue
    • 1
  • Huihui Zhong
    • 1
  • Weiying Hua
    • 1
  • Ruijia Chen
    • 1
  • Youfang Cao
    • 1
  • Liping Zhao
    • 1
    • 2
  1. 1.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State key laboratory of Microbial metabolism and School of Life Science & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations