Applied Microbiology and Biotechnology

, Volume 90, Issue 3, pp 799–808 | Cite as

Peptide-based treatment of sepsis

  • Klaus BrandenburgEmail author
  • Jörg Andrä
  • Patrick Garidel
  • Thomas Gutsmann


Sepsis (blood poisoning) is a severe infectious disease with high mortality, and no effective therapy is actually known. In the case of Gram-negative bacteria, endotoxins (lipopolysaccharides) are known to be responsible for the strong inflammation reaction leading to the systemic infection. Peptides based on endotoxin-binding domains of human or animal proteins represent a promising approach in sepsis research. Although so far no medicament is available, the progress in recent years might lead to a breakthrough in this field. In this review, recent investigations are summarised, which may lead to an understanding of the mechanisms of action of peptides to suppress the inflammation reaction in vitro and in vivo (animal models) and thus may allow the development of effective anti-septic drugs.


Sepsis Endotoxin Lipopolysaccharide Antimicrobial peptides Defensins Limulus 



The authors are indebted the German ministry BMBF for financial support (K.B. 01GU0824). J.A. acknowledges the financial support from the German Science Foundation (DFG) grant AN301/5-1.


  1. Agerberth B, Grunewald J, Castanos-Velez E, Olsson B, Jornvall H, Wigzell H, Eklund A, Gudmundsson GH (1999) Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 160:283–290Google Scholar
  2. Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Sillard R, Jornvall H, Mutt V, Olsson B, Wigzell H (1995) NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J 14:1615–1625Google Scholar
  3. Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B, Dagerlind A, Wigzell H, Boman HG, Gudmundsson GH (1996) NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet Immunol Immunopathol 54:123–126CrossRefGoogle Scholar
  4. Andersson M, Girard R, Cazenave P (1999) Interaction of NK lysin, a peptide produced by cytolytic lymphocytes, with endotoxin. Infect Immun 67:201–205Google Scholar
  5. Andrä J, Garidel P, Majerle A, Jerala R, Ridge R, Paus E, Novitsky T, Koch MHJ, Brandenburg K (2004a) Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide. Eur J Biochem 271:2037–2046CrossRefGoogle Scholar
  6. Andrä J, Koch MHJ, Bartels R, Brandenburg K (2004b) Biophysical characterization of endotoxin inactivation by NK-2, an antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 48:1593–1599CrossRefGoogle Scholar
  7. Andrä J, Lamata M, Martinez de Tejada G, Bartels R, Koch MHJ, Brandenburg K (2004c) Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide. Biochem Pharmacol 68:1297–1307CrossRefGoogle Scholar
  8. Andrä J, Lohner K, Blondelle SE, Jerala R, Moriyon I, Koch MHJ, Garidel P, Brandenburg K (2005) Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochem J 385:135–143CrossRefGoogle Scholar
  9. Andrä J, Gutsmann T, Garidel P, Brandenburg K (2006) Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res 12:261–277Google Scholar
  10. Andrä J, Howe J, Garidel P, Rössle M, Richter W, Leiva-Leon J, Moriyon I, Bartels R, Gutsmann T, Brandenburg K (2007a) Mechanism of interaction of optimized Limulus-derived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis. Biochem J 406:297–307CrossRefGoogle Scholar
  11. Andrä J, Monreal D, Martinez de Tejada G, Olak C, Brezesinski G, Gomez SS, Goldmann T, Bartels R, Brandenburg K, Moriyon I (2007b) Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens. J Biol Chem 282:14719–14728CrossRefGoogle Scholar
  12. Appelmelk BJ, An Y-Q, Geerts M, Thijs BG, De Boer HA, MacLaren DM, De Graaff J, Nuijens JH (1994) Lactoferrin is a lipid A-binding protein. Infect Immun 62:2628–2632Google Scholar
  13. Baumgartner JD, Heumann D, Gerain J, Weinbreck P, Grau GE, Glauser MP (1990) Association between protective efficacy of anti-lipopolysaccharide (LPS) antibodies and suppression of LPS-induced tumor necrosis factor alfa and interleukin 6. J Exp Med 171:889–896CrossRefGoogle Scholar
  14. Bowdish DM, Hancock RE (2005) Anti-endotoxin properties of cationic host defence peptides and proteins. J Endotoxin Res 11:230–236Google Scholar
  15. Brandenburg K, Jürgens G, Müller M, Fukuoka S, Koch MHJ (2001) Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol Chem 382:1215–1225CrossRefGoogle Scholar
  16. Brandenburg K, David A, Howe J, Koch MHJ, Andrä J, Garidel P (2005) Temperature dependence of the binding of endotoxins to the polycationic peptides polymyxin B and its nonapeptide. Biophys J 88:1845–1858CrossRefGoogle Scholar
  17. Brandenburg K, Garidel P, Fukuoka S, Howe J, Koch MHJ, Gutsmann T, Andrä J (2010) Molecular basis for endotoxin neutralization by amphipathic peptides derived from the alpha-helical cationic core-region of NK-lysin. Biophys Chem 150:80–87CrossRefGoogle Scholar
  18. Chen X, Howe J, Andrä J, Rössle M, Richter W, da Silva AP, Krensky AM, Clayberger C, Brandenburg K (2007) Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins. Biochim Biophys Acta 1768:2421–2431CrossRefGoogle Scholar
  19. Ciornei CD, Sigurdardottir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49:2845–2850CrossRefGoogle Scholar
  20. Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368:173–176CrossRefGoogle Scholar
  21. Cross AS, Opal SM (1995) Endotoxin's role in Gram-negative bacterial infection. Curr Opin Infect Dis 8:156–163CrossRefGoogle Scholar
  22. Cruz DN, Bellomo R, Ronco C (2007) Clinical effects of polymyxin B-immobilized fiber column in septic patients. Contrib Nephrol 156:444–451CrossRefGoogle Scholar
  23. Dankesreiter S, Hoess A, Schneider-Mergener J, Wagner H, Mietke T (2000) Synthetic endotoxin-binding peptides block endotoxin-triggered TNF-α production by macrophages in vitro and in vivo and prevent endotoxin-mediated toxic shock. J Immunol 164:4804–4811Google Scholar
  24. Davis EG, Sang Y, Rush B, Zhang G, Blecha F (2005) Molecular cloning and characterization of equine NK-lysin. Vet Immunol Immunopathol 105:163–169CrossRefGoogle Scholar
  25. de Haas CJ, Haas PJ, van Kessel KP, van Strijp JA (1998) Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochem Biophys Res Commun 252:492–496CrossRefGoogle Scholar
  26. Deng A, Chen S, Li Q, Lyu SC, Clayberger C, Krensky AM (2005) Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J Immunol 174:5243–5248Google Scholar
  27. Dhainaut JF, Yan SB, Joyce DE, Pettila V, Basson B, Brandt T, Sundin DP, Levis ML (2004) Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost 2:1924–1833CrossRefGoogle Scholar
  28. Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G (1998) Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun 66:486–491Google Scholar
  29. Endsley JJ, Furrer JL, Endsley MA, McIntosh MA, Maue AC, Waters WR, Lee DR, Estes DM (2004) Characterization of bovine homologues of granulysin and NK-lysin. J Immunol 173:2607–2614Google Scholar
  30. Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10:R27CrossRefGoogle Scholar
  31. Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Liden S, Jornvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92CrossRefGoogle Scholar
  32. Garidel P, Brandenburg K (2009) Current understanding of polymyxin B applications in bacteraemia/sepsis therapy prevention: clinical, pharmaceutical, structural and mechanistic aspects. Antiinfect Agents Medic Chem 8:367–385Google Scholar
  33. Gutsmann T, Howe J, Zähringer U, Garidel P, Schromm AB, Koch MHJ, Fujimoto Y, Fukase K, Moriyon I, Martinez de Tejada G, Brandenburg K (2010a) Structural prerequisites for endotoxic activity in the Limulus test as compared to cytokine production in mononuclear cells. Innate Immun 16:39–47CrossRefGoogle Scholar
  34. Gutsmann T, Razquin-Olazaran I, Kowalski I, Kaconis Y, Howe J, Bartels R, Hornef M, Schürholz T, Rössle M, Sanchez-Gomez S, Moriyon I, Martinez de Tejada G, Brandenburg K (2010b) New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother 54:3817–3824CrossRefGoogle Scholar
  35. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557CrossRefGoogle Scholar
  36. Hashimoto M, Furuyashiki M, Kaseya R, Fukada Y, Akimaru M, Aoyama K, Okuno T, Tamura T, Kirikae T, Kirikae F, Eiraku N, Morioka H, Fujimoto Y, Fukase K, Takashige K, Moriya Y, Kusumoto S, Suda Y (2007) Evidence of immunostimulating lipoprotein existing in the natural lipoteichoic acid fraction. Infect Immun 75:1926–1932CrossRefGoogle Scholar
  37. Haversen L, Kondori N, Baltzer L, Hanson LA, Dolphin GT, Duner K, Mattsby-Baltzer I (2010) Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Antimicrob Agents Chemother 54:418–425CrossRefGoogle Scholar
  38. Hirata M, Zhong J, Wright SC, Larrick JW (1995) Structure and functions of endotoxin-binding peptides derived from CAP18. Prog Clin Biol Res 392:317–326Google Scholar
  39. Hoess A, Watson S, Siber GR, Liddington R (1993) Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 A resolution. EMBO J 12:3351–3356Google Scholar
  40. Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol 3:1033–1040CrossRefGoogle Scholar
  41. Howe J, Andrä J, Conde R, Iriarte M, Garidel P, Koch MHJ, Gutsmann T, Moriyon I, Brandenburg K (2007) Thermodynamic analysis of the lipopolysaccharide-dependent resistance of gram-negative bacteria against polymyxin B. Biophys J 92:2796–2805CrossRefGoogle Scholar
  42. Japelj B, Pristovsek P, Majerle A, Jerala R (2005) Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J Biol Chem 280:16955–16961CrossRefGoogle Scholar
  43. Kowalski I, Kaconis Y, Andrä J, Razquin-Olazaran I, Gutsmann T, Martinez de Tejada G, Brandenburg K (2010) Physicochemical and biological characterization of anti-endotoxin peptides and their Influence on lipid properties. Protein Pept Lett 17:1328–1333Google Scholar
  44. Larrick JW, Morgan JG, Palings I, Hirata M, Yen MH (1991) Complementary DNA sequence of rabbit CAP18–a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 179:170–175CrossRefGoogle Scholar
  45. Lefrant JY, Muller L, Raillard A, Jung B, Beaudroit L, Favier L, Masson B, Dingemans G, Thevenot F, Selcer D, Jonquet O, Capdevila X, Fabbro-Peray P, Jaber S (2010) Reduction of the severe sepsis or septic shock associated mortality by reinforcement of the recommendations bundle: a multicenter study. Ann Fr Anesth Rèanim 29:621–628Google Scholar
  46. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102CrossRefGoogle Scholar
  47. Leippe M (1995) Ancient weapons: NK-lysin is a mammalian homolog to pore-forming peptides of a protozoan parasite. Cell 83:17–18CrossRefGoogle Scholar
  48. Levin J (1987) The Limulus amebocyte lysate test: perspectives and problems. Prog Clin Biol Res 231:1–23Google Scholar
  49. Liepinsh E, Andersson M, Ruysschaert JM, Otting G (1997) Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol 4:793–795CrossRefGoogle Scholar
  50. Malm J, Sorensen O, Persson T, Frohm-Nilsson M, Johansson B, Bjartell A, Lilja H, Stahle-Backdahl M, Borregaard N, Egesten A (2000) The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 68:4297–4302CrossRefGoogle Scholar
  51. Michalopoulos A, Falagas ME (2008) Colistin and polymyxin B in critical care. Crit Care Clin 24:377–391CrossRefGoogle Scholar
  52. Morrison DC (1998) Antibiotic-mediated release of endotoxin and the pathogenesis of Gram-negative sepsis. Prog Clin Biol Res 397:199–207Google Scholar
  53. Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E (2006) The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 20:1701–1702CrossRefGoogle Scholar
  54. Ogata M, Fletcher MF, Kloczewiak M, Loiselle PM, Zanzot EM, Vermeulen MW, Warren HS (1997) Effect of anticoagulants on binding and neutralization of lipopolysaccharide by the peptide immunoglobulin conjugate CAP18106–138-immunoglobulin G in whole blood. Infect Immun 65:2160–2167Google Scholar
  55. Opal SM, Cohen J (1999) Clinical Gram-positive sepsis: does it fundamentally differ from Gram-negative bacterial sepsis? Crit Care Med 27:1608–1616CrossRefGoogle Scholar
  56. Pan CY, Chao TT, Chen JC, Chen JY, Liu WC, Lin CH, Kuo CM (2007) Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice. Int Immunopharmacol 7:687–700CrossRefGoogle Scholar
  57. Pena SV, Hanson DA, Carr BA, Goralski TJ, Krensky AM (1997) Processing, subcellular localization, and function of 519 (Granulysin), a human late T cell sctivation molecule with homology to small, lytic, granule proteins. J Immunol 158: 2680–2688Google Scholar
  58. Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, Maria RG, Bracci L (2009) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24:1015–1022CrossRefGoogle Scholar
  59. Reinhart K, Karzai W (2001) Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 7:S121–S125CrossRefGoogle Scholar
  60. Ren JD, Gu JS, Gao HF, Xia PY, Xiao GX (2008) A synthetic cyclic peptide derived from Limulus anti-lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 8:775–781CrossRefGoogle Scholar
  61. Ried C, Wahl C, Miethke T, Wellnhofer G, Landgraf C, Schneider-Mergener J, Hoess A (1996) High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. J Biol Chem 271:28120–28127CrossRefGoogle Scholar
  62. Scott MG, Vreugdenhil ACE, Buurman WA, Hancock REW, Gold M (2000) Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164:549–553Google Scholar
  63. Sorensen O, Cowland JB, Askaa J, Borregaard N (1997) An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Meth 206:53–59CrossRefGoogle Scholar
  64. Tidswell M, Tillis W, LaRosa SP, Lynn M, Wittek AE, Kao R, Wheller J, Gogate J, Opal SM, Eritoran Sepsis Study Group (2010) Phase 2 trial od eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med 38:72–83CrossRefGoogle Scholar
  65. Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755CrossRefGoogle Scholar
  66. Wang Q, Wang Y, Xu P, Liu Z (2006) NK-lysin of channel catfish: gene triplication, sequence variation, and expression analysis. Mol Immunol 43:1676–1686CrossRefGoogle Scholar
  67. Wieczorek M, Jenssen H, Kindrachuk J, Scott WR, Elliott M, Hilpert K, Cheng JT, Hancock RE, Straus SK (2010) Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol 17:970–980CrossRefGoogle Scholar
  68. Yang SH, Tamai R, Akashi S, Takeuchi O, Akira S, Sugawara S, Takada H (2001) Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect Immun 69:2045–2053CrossRefGoogle Scholar
  69. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Klaus Brandenburg
    • 1
    • 3
    Email author
  • Jörg Andrä
    • 1
  • Patrick Garidel
    • 2
  • Thomas Gutsmann
    • 1
  1. 1.Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and BiowissenschaftenBorstelGermany
  2. 2.Martin-Luther-Universität Halle-Wittenberg, Institut für Physikalische Chemie, 06120 HalleGermany and University of KaiserslauternKaiserslauternGermany
  3. 3.Forschungszentrum Borstel, BiophysicsBorstelGermany

Personalised recommendations