Abstract
A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3 Rru ) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3 Rru turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3 Rru with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3 Rru was specific for short-chain-length polyhydroxyalkanoates (PHASCL) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3 Rru . Low concentrations of calcium or magnesium ions (1–5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3 Rru is the representative of a new type of the growing number of intracellular PHB depolymerases.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446
Chen HJ, Pan SC, Shaw GC (2009) Identification and characterization of a novel intracellular poly(3-hydroxybutyrate) depolymerase from Bacillus megaterium. Appl Environ Microbiol 75:5290–5299
de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galan B, Garcia JL, Prieto MA (2010) The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221
Gebauer B, Jendrossek D (2006) Assay of poly(3-hydroxybutyrate) depolymerase activity and product determination. Appl Environ Microbiol 72:6094–6100
Handrick R, Reinhardt S, Jendrossek D (2000) A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acids. J Bacteriol 182:5916–5918
Handrick R, Reinhardt S, Kimmig P, Jendrossek D (2004a) The “intracellular” poly(3-hydroxybutyrate) (PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases. J Bacteriol 186:7243–7253
Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek V, Jendrossek D (2004b) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475
Handrick R, Technow U, Reichart T, Reinhardt S, Sander T, Jendrossek D (2004c) The activator of the Rhodospirillum rubrum PHB depolymerase is a polypeptide that is extremely resistant to high temperature (121 degrees C) and other physical or chemical stresses. FEMS Microbiol Lett 230:265–274
Hisano T, Kasuya KI, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, Oroudjev E, Hansma H, Iwata T, Doi Y, Saito T, Miki K (2006) The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol 356:993
Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202
Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432
Jendrossek D, Knoke I, Habibian RB, Steinbüchel A, Schlegel HG (1993) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J Environ Polym 1:53–63
Jendrossek D, Frisse A, Behrends A, Andermann M, Kratzin HD, Stanislawski T, Schlegel HG (1995) Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. J Bacteriol 177:596–607
Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463
Kidwell J, Valentin HE, Dennis D (1995) Regulated expression of the Alcaligenes eutrophus pha biosynthesis genes in Escherichia coli. Appl Environ Microbiol 61:1391–1398
Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase H, Kato N (1997) Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. Biochim Biophys Acta 1352:113–122
Klingbeil B, Kroppenstedt RM, Jendrossek D (1996) Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol Lett 142:215–221
Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J (2009) The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform 10:89
Kobayashi T, Saito T (2003) Catalytic triad of intracellular poly(3-hydroxybutyrate) depolymerase (PhaZ1) in Ralstonia eutropha H16. J Biosci Bioeng 96:487–492
Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53
Merrick JM, Doudoroff M (1964) Depolymerization of poly-beta-hydroxybutyrate by intracellular enzyme system. J Bacteriol 88:60–71
Müller B, Jendrossek D (1993) Purification and properties of a poly(3-hydroxyvalerate) depolymerase from Pseudomonas lemoignei. Appl Microbiol Biotechnol 38:487–492
Papageorgiou AC, Hermawan S, Singh CB, Jendrossek D (2008) Structural basis of poly(3-hydroxybutyrate) hydrolysis by PhaZ7 depolymerase from Paucimonas lemoignei. J Mol Biol 382:1184–1194
Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Shively JM (ed) Inclusions in prokaryotes. Springer Verlag, Berlin, pp 109–136
Rehm B (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213
Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108
Romen F, Reinhardt S, Jendrossek D (2004) Thermotolerant poly(3-hydroxybutyrate)-degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Arch Microbiol 182:157–164
Saito T, Kobayashi T (2002) Intracellular degradation of PHAs. In: Doi Y, Steinbüchel A (eds) Biopolymers. Wiley-VCH, Weinheim, pp 23–40
Saito T, Suzuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, Nakanishi S, Odani S, Suzuki J, Ishikawa K (1989) Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J Bacteriol 171:184–189
Schirmer A, Jendrossek D, Schlegel HG (1993) Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl Environ Microbiol 59:1220–1227
Schöber U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei. Appl Environ Microbiol 66:1385–1392
Shinomiya M, Iwata T, Kasuya K, Doi Y (1997) Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett 154:89–94
Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480
Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polymers. Prog Polym Sci 25:1503–1555
Takaku H, Kimoto A, Kodaira S, Nashimoto M, Takagi M (2006) Isolation of a gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9. FEMS Microbiol Lett 264:152–159
Tseng CL, Chen HJ, Shaw GC (2006) Identification and characterization of the Bacillus thuringiensis phaZ gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J Bacteriol 188:7592–7599
Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189:8250–8256
Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Leeuwenhoek 91:1–17
Wakadkar S, Hermawan S, Jendrossek D, Papageorgiou A (2010) The crystal structure of PhaZ7 at 1.2 Å: insights into the catalytic mechanism and substrate binding. Cryst Sec F Struct Biol Cryst Commu F66:648–654
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sznajder, A., Jendrossek, D. Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules. Appl Microbiol Biotechnol 89, 1487–1495 (2011). https://doi.org/10.1007/s00253-011-3096-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-011-3096-7


