Skip to main content
Log in

Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Amadori products (fructosamines)—ubiquitously occurring in nature—are precursors of the toxic and cell damaging ‘advanced glycation endproducts’; thus, it is not surprising that numerous organisms have developed systems to degrade such compounds. The deglycating enzymes differ with respect to their mechanisms as well as to their substrate specificities. Furthermore, different physiological functions are proposed for the different enzymes. The fructosamine 3-kinases of mammals and homologous proteins (fructosamine 3-kinase related proteins), which are common to all taxa, are thought to focus on intracellular repair functions. In contrast, in Bacillus subtilis and Escherichia coli, the cooperative action of a kinase and a deglycase facilitates Amadori degradation. As genes encoding these enzymes are co-transcribed with ABC transporter genes, it is thought that these genes facilitate the utilisation of extracellular Amadori products. Indeed, it has been shown that fructosamines can serve as the sole carbon and nitrogen sources. Here, we provide an overview of known deglycating systems with the emphasis on Amadori product degradation in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed MU, Thorpe SR, Baynes JW (1986) Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 261:4889–4894

    CAS  Google Scholar 

  • Baek CH, Farrand SK, Lee KE, Park DK, Lee JK, Kim KS (2003) Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens. J Bacteriol 185:513–524

    Article  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28:1708–1716

    Article  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2:31–40

    Article  CAS  Google Scholar 

  • Brownlee M (1991) Glycosylation products as toxic mediators of diabetic complications. Annu Rev Med 42:159–166

    Article  CAS  Google Scholar 

  • Colas B, Boulanger Y (1983) Glycosylation of yeast aspartyl-tRNA synthetase. Affinity labelling by glucose and glucose 6-phosphate. FEBS Lett 163:175–180

    Article  CAS  Google Scholar 

  • Collard F, Delpierre G, Stroobant V, Matthijs G, Van Schaftingen E (2003) A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines. Diabetes 52:2888–2895

    Article  CAS  Google Scholar 

  • Collard F, Wiame E, Bergans N, Fortpied J, Vertommen D, Vanstapel F, Delpierre G, Van Schaftingen E (2004) Fructosamine 3-kinase-related protein and deglycation in human erythrocytes. Biochem J 382:137–143

    Article  CAS  Google Scholar 

  • Delplanque J, Delpierre G, Opperdoes FR, Van Schaftingen E (2004) Tissue distribution and evolution of fructosamine 3-kinase and fructosamine 3-kinase-related protein. J Biol Chem 279:46606–46613

    Article  CAS  Google Scholar 

  • Dimitrova R, Mironova R, Ivanov I (2004) Glycation of proteins in Escherichia coli: Effect of nutrient broth ingredients on glycation. Biotechnol Biotechnol 18:99–103

    CAS  Google Scholar 

  • Erbersdobler HF, Faist V (2001) Metabolic transit of Amadori products. Nahrung 45:177–181

    Article  CAS  Google Scholar 

  • Ferri S, Sakaguchi A, Goto H, Tsugawa W, Sode K (2005) Isolation and characterization of a fructosyl-amine oxidase from an Arthrobacter sp. Biotechnol Lett 27:27–32

    Article  CAS  Google Scholar 

  • Fortpied J, Gemayel R, Stroobant V, van Schaftingen E (2005) Plant ribulosamine/erythrulosamine 3-kinase, a putative protein-repair enzyme. Biochem J 388:795–802

    Article  CAS  Google Scholar 

  • Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E (2006) Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem 281:18378–18385

    Article  CAS  Google Scholar 

  • Fortpied J, Gemayel R, Vertommen D, Van Schaftingen E (2007) Identification of protein-ribulosamine-5-phosphatase as human low-molecular-mass protein tyrosine phosphatase-A. Biochem J 406:139–145

    Article  CAS  Google Scholar 

  • Gemayel R, Fortpied J, Rzem R, Vertommen D, Veiga-da-Cunha M, Van Schaftingen E (2007) Many fructosamine 3-kinase homologues in bacteria are ribulosamine/erythrulosamine 3-kinases potentially involved in protein deglycation. FEBS J 274:4360–4374

    Article  CAS  Google Scholar 

  • Haney DN, Bunn HF (1976) Glycosylation of hemoglobin in vitro: affinity labeling of hemoglobin by glucose-6-phosphate. Proc Natl Acad Sci USA 73:3534–3538

    Article  CAS  Google Scholar 

  • Hodge JE (1953) Chemistry of browning reactions in models systems. J Agric Food Chem 1:928–943

    Article  CAS  Google Scholar 

  • Iwashige K, Kouda K, Kouda M, Horiuchi K, Takahashi M, Nagano A, Tanaka T, Takeuchi H (2004) Calorie restricted diet and urinary pentosidine in patients with rheumatoid arthritis. J Physiol Anthropol Appl Hum Sci 23:19–24

    Article  Google Scholar 

  • Kappler F, Schwartz ML, Su B, Tobia AM, Brown T (2001) DYN 12, a small molecule inhibitor of the enzyme amadorase, lowers plasma 3-deoxyglucosone levels in diabetic rats. Diabetes Technol Ther 3:609–616

    Article  CAS  Google Scholar 

  • Katz C, Cohen-Or I, Gophna U, Ron EZ (2010) The ubiquitous conserved glycopeptidase Gcp prevents accumulation of toxic glycated proteins. mBio 1:195–210

    Article  Google Scholar 

  • Kim KS, Farrand SK (1996) Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol 178:3275–3284

    CAS  Google Scholar 

  • Li C, Clarke S (1992) A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Proc Natl Acad Sci USA 89:9885–9889

    Article  CAS  Google Scholar 

  • Lin Z, Zheng J (2010) Occurrence, characteristics, and applications of fructosyl amine oxidases (amadoriases). Appl Microbiol Biotechnol 86:1613–1619

    Article  CAS  Google Scholar 

  • Lyons TJ, Jenkins AJ (1997) Glycation, oxidation and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev 5:365–391

    Google Scholar 

  • Machiels D, Istasse L (2002) Maillard reaction: importance and applications in food chemistry. Ann Méd Vét 146:347–352

    Google Scholar 

  • Mironova R, Niwa T, Hayashi H, Dimitrova R, Ivanov I (2001) Evidence for non-enzymatic glycosylation in Escherichia coli. Mol Microbiol 39:1061–1068

    Article  CAS  Google Scholar 

  • Nursten H (2005) The Maillard reaction chemistry, biochemistry and implications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Orchard LM, Kornberg HL (1990) Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc Biol Sci 242:87–90

    Article  CAS  Google Scholar 

  • Resch M, Schiltz E, Titgemeyer F, Muller YA (2010) Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Res 38:2485–2497

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Saxena AK, Saxena P, Monnier VM (1996) Purification and characterization of a membrane-bound deglycating enzyme (1-deoxyfructosyl alkyl amino acid oxidase, EC 1.5.3) from a Pseudomonas sp. soil strain. J Biol Chem 271:32803–32809

    Article  CAS  Google Scholar 

  • Shallenberger RS (1974) Occurrence of various sugars in foods. In: Sipple HL, McNuttt KW (eds) Sugars in nutrition. Academic, New York, pp 67–80

    Google Scholar 

  • Srebreva LN, Stoynev GA, Ivanov IG (2009) Evidence for excretion of glycation agents from E. coli cells during growth. Biotechnol Biotechnol 23:1068–1071

    CAS  Google Scholar 

  • Stevens VJ, Vlassara H, Abati A, Cerami A (1977) Nonenzymatic glycosylation of hemoglobin. J Biol Chem 252:2998–3002

    CAS  Google Scholar 

  • Stevens VJ, Rouzer CA, Monnier VM, Cerami A (1978) Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci USA 75:2918–2922

    Article  CAS  Google Scholar 

  • Szwergold BS, Howell S, Beisswenger PJ (2001) Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50:2139–2147

    Article  CAS  Google Scholar 

  • Takahashi M, Pischetsrieder M, Monnier VM (1997) Isolation, purification, and characterization of amadoriase isoenzymes (fructosyl amine-oxygen oxidoreductase EC 1.5.3) from Aspergillus sp. J Biol Chem 272:3437–3443

    Article  CAS  Google Scholar 

  • Van Schaftingen E, Delpierre G, Collard F, Fortpied J, Gemayel R, Wiame E, Veiga-da-Cunha M (2007) Fructosamine 3-kinase and other enzymes involved in protein deglycation. Adv Enzyme Regul 47:261–269

    Article  Google Scholar 

  • Wiame E, Van Schaftingen E (2004) Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem J 378:1047–1052

    Article  CAS  Google Scholar 

  • Wiame E, Delpierre G, Collard F, Van Schaftingen E (2002) Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 277:42523–42529

    Article  CAS  Google Scholar 

  • Wiame E, Duquenne A, Delpierre G, Van Schaftingen E (2004) Identification of enzymes acting on alpha-glycated amino acids in Bacillus subtilis. FEBS Lett 577:469–472

    Article  CAS  Google Scholar 

  • Wiame E, Lamosa P, Santos H, Van Schaftingen E (2005) Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine. Biochem J 392:263–269

    Article  CAS  Google Scholar 

  • Wu LF, Reizer A, Reizer J, Cai B, Tomich JM, Saier MH Jr (1991) Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. J Bacteriol 173:3117–3127

    CAS  Google Scholar 

  • Yoshida N, Sakai Y, Serata M, Tani Y, Kato N (1995) Distribution and properties of fructosyl amino acid oxidase in fungi. Appl Environ Microbiol 61:4487–4489

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Meinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deppe, V.M., Bongaerts, J., O’Connell, T. et al. Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions. Appl Microbiol Biotechnol 90, 399–406 (2011). https://doi.org/10.1007/s00253-010-3083-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3083-4

Keywords

Navigation