Skip to main content

Advertisement

Log in

Chemical inhibitors of methanogenesis and putative applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This mini-review summarizes the category, characteristics, and the application fields of the chemical methanogenic inhibitors. Usually, the chemical methanogenic inhibitors can be divided into “specific” and nonspecific inhibitors. The former group includes the structural analogs of coenzyme M and HMG-CoA inhibitors. The nonspecific group includes many chemicals which can inhibit the activity of both methanogens and non-methanogens. The chemical inhibitors of methanogenesis have been widely used in the fields of understanding methane production and consumption in pure culture or in complex natural environment, production of value-added substances, such as volatile fatty acids and hydrogen, and reduction of energy loss and improvement of the efficiency of ruminal energetic transformations. Finally, with an increasing understanding of the mechanistic effects of the chemical inhibitors of methanogenesis, it is possible that some could be used to develop into promising feed additives to reduce losses associated with enteric methane production or as useful tools to screen microbial consortia from various biotechnological applications to enhance hydrogen and acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50:940–945

    CAS  Google Scholar 

  • Anderson RC, Carstens GE, Miller RK, Callaway TR, Schultz CL, Edrington TS, Harvey RB, Nisbet DJ (2006a) Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresour Technol 97:2421–2426

    CAS  Google Scholar 

  • Anderson RC, Rasmussen MA, Jensen NS, Allison MJ (2006b) Denitrobacterium detoxificans gen. Nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 50:633–638

    Google Scholar 

  • Anderson RC, Krueger NA, Stanton TB, Callaway TR, Edrington TS, Harvey RB, Jung YS, Nisbet DJ (2008) Effects of select nitrocompounds on in vitro ruminal fermention during conditions of limiting or excess added reductant. Bioresour Technol 99:8655–8661

    Article  CAS  Google Scholar 

  • Bauchop T (1967) Inhibition of rumen methanogenesis by methane analogues. J Bacteriol 94:171–175

    Article  CAS  Google Scholar 

  • Bernhard S (1985) Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. FEMS Microbiol Ecol 31:63–68

    Article  Google Scholar 

  • Bouwer EJ, McCarty PL (1983) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294

    CAS  Google Scholar 

  • Bozic AK, Anderson RC, Carstens GE, Ricke SC, Callaway TR, Yokoyama MT, Wang JK, Nisbet DJ (2009) Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresour Technol 100:4017–4025

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH (2000) Acetogenic microbial degradation of vinyl chloride. Environ Sci Technol 34:2761–2763

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 44:3102–3105

    Google Scholar 

  • Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrogen Energy 35:13379–13386

    Article  CAS  Google Scholar 

  • Chanona J, Ribes J, Seco A, Ferrer J (2006) Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production. Water Res 40:53–60

    Article  CAS  Google Scholar 

  • Chen YY, Liu H, Du GC, Chen J (2007) Acetate accumulation and variation of bacterial community in anaerobic fermentation sludge by addition of 2-bromoethanesulfonate. Chin J Appl Environ Biol 13:108–111

    Google Scholar 

  • Chidthaisong A, Conrad R (2000) Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biol Biochem 32:977–988

    Article  CAS  Google Scholar 

  • Chiu PC, Lee M (2001) 2-Bromoethanesulfonate affects bacteria in a trichloroethene-dechlorinating culture. Appl Environ Microbiol 67:2371–2374

    Article  CAS  Google Scholar 

  • Conrad R, Klose M (1999a) Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30:147–155

    Article  CAS  Google Scholar 

  • Conrad R, Klose M (1999b) How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol 30:47–56

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Claus P (2000) Phosphate inhibits acetotrophic methanogenesis on rice roots. Appl Environ Microbiol 66:828–831

    Article  CAS  Google Scholar 

  • DeGraaf WD, Wellsbury P, Parkes RJ, Cappenberg TE (1996) Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: evidence for isotopic exchange. Appl Environ Microbiol 62:772–777

    CAS  Google Scholar 

  • Dohme F, Machmuller A, Wasserfallen A, Kreuzer M (2001) Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol 32:47–51

    Article  CAS  Google Scholar 

  • Feng LY, Chen YG, Zheng X (2009) Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol 43:4373–4380

    Article  CAS  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797

    Article  CAS  Google Scholar 

  • Frenzel P, Bosse U (1996) Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiol Ecol 21:25–36

    Article  CAS  Google Scholar 

  • Galbraith H, Miller TB (1973) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Microbiol 36(4):647–658

    Article  CAS  Google Scholar 

  • Gonzalez N, Galindo J, Gonzalez R, Sosa A, Moreira O, Delgado D, Martin E, Sanabria C (2006) Utilization of the real time PCR and in vitro gas production technique for determining the effect of bromoethanesulfonic acid on the methanogenesis and rumen microbial population. Cuban J Agric Sci 40:171–177

    Google Scholar 

  • Hickey R, Vanderwielen FJ, Switzenbaum MS (1987) The effects of organic toxicants on methane production and hydrogen gas levels during the anaerobic digestion of waste activated sludge. Water Res 21:1417–1427

    Article  CAS  Google Scholar 

  • Hu B, Chen SL (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy 32:3266–3273

    Article  CAS  Google Scholar 

  • IPCC (2007) How has the science of climate change advanced since the IPCC began. Intergovernmental Panel on Climate Change, New York

    Google Scholar 

  • Janssen PH, Frenzel P (1997) Inhibition of methanogenesis by methyl fuoride-studies of pure and defined mixed cultures of anaerobic bacteria and archaea. Appl Environ Microbiol 63:4552–4557

    CAS  Google Scholar 

  • Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht M (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  Google Scholar 

  • Liu YC, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125:171–189

    Article  CAS  Google Scholar 

  • Machmüller A, Kreuzer M (2004) Impact of the methane-suppressing feed additive myristic acid on energy and calcium balance of sheep. J Anim Feed Sci 13(Suppl 1):151–154

    Google Scholar 

  • Machmüller A, Soliva CR, Kreuzer M (2002) In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can J Anim Sci 82:233–239

    Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  CAS  Google Scholar 

  • Nagar-Anthal KR, Worrell VE, Teal R, Nagle DP (1996) The pterin lumazine inhibits growth of methanogens and methane formation. Arch Microbiol 166:136–140

    Article  CAS  Google Scholar 

  • Nollet L, Demeyer D, Verstraete W (1997) Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl Environ Microbiol 63:194–200

    CAS  Google Scholar 

  • Nozoe T (1997) Effects of methanogenesis and sulfate-reduction on acetogenetic oxidation of propionate and further decomposition of acetate in paddy soil. Soil Sci Plant Nutr 43:1–10

    CAS  Google Scholar 

  • Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5:1587–1599

    Article  CAS  Google Scholar 

  • Oremland RS, Capone DG (1998) Use of specific inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383

    Google Scholar 

  • Oremland RS, Culbertson CW (1992) Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl Environ Microbiol 58:2983–2992

    CAS  Google Scholar 

  • Sar C, Mwenya B, Santoso B, Takaura K, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J (2005) Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J Anim Sci 83:644–652

    CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  CAS  Google Scholar 

  • Scheehle EA, Kruger D (2006) Global anthropogenic methane and nitrous oxide emissions. Energy J 3:33–44

    Google Scholar 

  • Scholten JCM, Conrad R, Stams AJM (2000) Effect of 2-bromoethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiol Ecol 32:35–42

    Article  CAS  Google Scholar 

  • Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol Ecol 20:1–14

    Article  CAS  Google Scholar 

  • Siriwongrungson V, Zeng RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41:4204–4210

    Article  CAS  Google Scholar 

  • Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmuller A (2003) Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett Appl Microbiol 37:35–39

    Article  CAS  Google Scholar 

  • Sprott GD, Jarrell KF, Shaw KM, Knowles R (1982) Acetylene as an inhibitor of methanogenic bacteria. J Gen Microbiol 128:2453–2462

    CAS  Google Scholar 

  • Tong JA, Chen YG (2007) Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environ Sci Technol 41:7126–7130

    Article  CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett R (2003) Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod Nutr Dev 43:189–202

    Article  CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Boone DR, Liu Y (2004) Effects of several inhibitors on pure cultures of ruminal methanogens. J Appl Microbiol 97:520–526

    Article  CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett RJ, Yokoyama MT, Wang JK (2005) Effects of two lipids on in vitro ruminal methane production. Anim Feed Sci Technol 119:179–185

    Article  CAS  Google Scholar 

  • Ungerfeld EM, Rust SR, Burnett R (2007) Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can J Microbiol 53:496–503

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000–1013

    Article  CAS  Google Scholar 

  • Van Nevel CJ, Demeyer DI (1996) Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen content in vitro. Reprod Nutr Dev 36:53–63

    Article  CAS  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37:2789–2793

    Article  CAS  Google Scholar 

  • Wind T, Stubner S, Conrad R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22:269–279

    CAS  Google Scholar 

  • Wolin MJ, Miller TL (2006) Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. Int Congr Ser 1293:131–137

    Article  CAS  Google Scholar 

  • Wright A, Kennedy P, O’Neill CJ, Toovey AF, Popovski S, Rea SM, Pimm CL, Klein L (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976–3985

    Article  CAS  Google Scholar 

  • Wüst PK, Horn MA, Drake HL (2009) Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ Microbiol 11:1395–1409

    Article  Google Scholar 

  • Xu KW, Liu H, Du GC, Chen J (2009) Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 15:204–213

    Article  CAS  Google Scholar 

  • Xu KW, Liu H, Chen J (2010a) Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour Technol 101:2600–2607

    Article  CAS  Google Scholar 

  • Xu KW, Liu H, Li XF, Chen JA, Wang AJ (2010b) Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl Microbiol Biotechnol 87:2267–2279

    Article  CAS  Google Scholar 

  • Zhu HG, Beland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 31:1980–1988

    Article  CAS  Google Scholar 

  • Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digester. Appl Environ Microbiol 47:1343–1345

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support from the National Natural Science Foundation (50978124), the Key Technologies R&D program (Social Development) of Jiangsu Province (BE2008627), National High-Tech 863 Program (2009AA064702), and the grant from State Key Laboratory of Urban Water Resources and Environment (HIT) (QAK200807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Liu or Aijie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, J., Wang, A. et al. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 89, 1333–1340 (2011). https://doi.org/10.1007/s00253-010-3066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3066-5

Keywords

Navigation