Applied Microbiology and Biotechnology

, Volume 89, Issue 4, pp 939–948 | Cite as

Production of recombinant proteins and metabolites in yeasts

When are these systems better than bacterial production systems?
  • Danilo Porro
  • Brigitte Gasser
  • Tiziana Fossati
  • Michael Maurer
  • Paola Branduardi
  • Michael Sauer
  • Diethard Mattanovich
Mini-Review

Abstract

Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why—despite important advances in rDNA applications in higher eukaryotic cells—microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems.

Keywords

Recombinant proteins Recombinant metabolites Bacterial host systems Yeast host systems Industrial biotechnology 

References

  1. Achmuller C, Kaar W, Ahrer K, Wechner P, Hahn R, Werther F, Schmidinger H, Cserjan-Puschmann M, Clementschitsch F, Striedner G, Bayer K, Jungbauer A, Auer B (2007) N(pro) fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4:1037–1043CrossRefGoogle Scholar
  2. Atsumi S, Cann A, Connor M, Shen C, Smith K, Brynildsen M, Chou K, Hanai T, Liao J (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311CrossRefGoogle Scholar
  3. Bailey J (1991) Toward a science of metabolic engineering. Science 252:1668–1675CrossRefGoogle Scholar
  4. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408CrossRefGoogle Scholar
  5. Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang RY, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA 3rd (2010) Cloning whole bacterial genomes in yeast. Nucleic Acids Res 38:2558–2569CrossRefGoogle Scholar
  6. Boettner M, Steffens C, von Mering C, Bork P, Stahl U, Lang C (2007) Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris — a comparative view on 79 human genes. J Biotechnol 130:1–10CrossRefGoogle Scholar
  7. Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503CrossRefGoogle Scholar
  8. Carrio MM, Villaverde A (2002) Construction and decostruction of bacterial inclusion bodies. J Biotechnol 96:2–12CrossRefGoogle Scholar
  9. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  10. Claassen PAM, van Lier JB, López Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnolol 52:741–755CrossRefGoogle Scholar
  11. Clomburg J, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434CrossRefGoogle Scholar
  12. Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3CrossRefGoogle Scholar
  13. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefGoogle Scholar
  14. Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17CrossRefGoogle Scholar
  15. Fieschko JC, Egan KM, Ritch T, Koski RA, Jones M, Bitter GA (1987) Controlled expression and purification of human immune interferon from high-cell-density fermentations of Saccharomyces cerevisiae. Biotechnol Bioeng 29:1113–1121CrossRefGoogle Scholar
  16. Freedonia Group Inc (2009) World enzymes to 2013, www.freedoniagroup.com
  17. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica — a comparison. FEMS Yeast Res 5:1079–1096CrossRefGoogle Scholar
  18. Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16:538–545CrossRefGoogle Scholar
  19. Gibson D, Benders G, Axelrod K, Zaveri J, Algire M, Moodie M, Montague M, Venter J, Smith H, Hutchison CR (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105:20404–20409CrossRefGoogle Scholar
  20. Goodman M (2009) Market watch: Sales of biologics to show robust growth through to 2013. Nat Rev Drug Discov 8:837CrossRefGoogle Scholar
  21. Graf A, Dragosits M, Gasser B, Mattanovich D (2009) Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res 9:335–348CrossRefGoogle Scholar
  22. Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186CrossRefGoogle Scholar
  23. Gurramkonda C, Polez S, Skoko N, Adnan A, Gabel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 9:31CrossRefGoogle Scholar
  24. Hakim R, Benhar I (2009) "Inclonals": IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system. MAbs 1:281–287CrossRefGoogle Scholar
  25. Heefner D, Weaver C, Yarus M, Burdzinski L (1992) Method for producing riboflavin with Candida famata. US Patent No. 5164303Google Scholar
  26. Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources(1). Enzyme Microb Technol 26:87–107CrossRefGoogle Scholar
  27. Holz C, Prinz B, Bolotina N, Sievert V, Bussow K, Simon B, Stahl U, Lang C (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J Struct Funct Genomics 4:97–108CrossRefGoogle Scholar
  28. Huang H, Ridgway D, Gu T, Moo-Young M (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst Eng 27:63–69CrossRefGoogle Scholar
  29. Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657CrossRefGoogle Scholar
  30. Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A (2009) Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid. Biosci Biotechnol Biochem 73:1818–1824CrossRefGoogle Scholar
  31. Ingram L, Gomez P, Lai X, Moniruzzaman M, Wood B, Yomano L, York S (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefGoogle Scholar
  32. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316CrossRefGoogle Scholar
  33. Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocesses Biosyst Eng 385–393Google Scholar
  34. Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042Google Scholar
  35. Jones D, Woods D (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524Google Scholar
  36. Jung Y, Kim T, Park S, Lee S (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171CrossRefGoogle Scholar
  37. Keasling J (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76CrossRefGoogle Scholar
  38. Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, Park S (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. P Natl Acad Sci USA 104:13638–13642Google Scholar
  39. Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54:277–286CrossRefGoogle Scholar
  40. Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stockmann C, Seletzky J, Buchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132:167–179CrossRefGoogle Scholar
  41. Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53:674–679CrossRefGoogle Scholar
  42. Larsen MW, Bornscheuer UT, Hult K (2008) Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expr Purif 62:90–97CrossRefGoogle Scholar
  43. Lartigue C, Vashee S, Algire M, Chuang R, Benders G, Ma L, Noskov V, Denisova E, Gibson D, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison CA 3rd, Smith HO, Venter C, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696CrossRefGoogle Scholar
  44. Macdonald G, on http://www.in-pharmatechnologist.com. Accessed 18 June 2009
  45. Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29CrossRefGoogle Scholar
  46. Maurer M, Kuehleitner M, Gasser B, Mattanovich D (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Fact 5:37CrossRefGoogle Scholar
  47. Mazor Y, Van Blarcom T, Carroll S, Georgiou G (2010) Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J 277:2291–2303CrossRefGoogle Scholar
  48. McHunu NP, Singh S, Permaul K (2009) Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 141:26–30CrossRefGoogle Scholar
  49. McLaughlin B, Reilly D (2008) Expression of soluble full length antibodies in E. coli. 5th Recombinant Protein Production Conference. Sardinia, ItalyGoogle Scholar
  50. Mergulhão F, Taipa M, Cabral J, Monteiro G (2004) Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 109:31–43CrossRefGoogle Scholar
  51. Najafpour DG (2006) Biochemical engineering and biotechnology. Elsevier, AmsterdamGoogle Scholar
  52. Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670CrossRefGoogle Scholar
  53. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423CrossRefGoogle Scholar
  54. Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62:369–373CrossRefGoogle Scholar
  55. Otero J, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460CrossRefGoogle Scholar
  56. Panda AK (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv Biochem Eng Biotechnol 85:43–93Google Scholar
  57. Pandhal J, Wright PC (2010) N-Linked glycoengineering for human therapeutic proteins in bacteria. Biotechnol Lett 32:1189–1198CrossRefGoogle Scholar
  58. Park EJ, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103:468–476CrossRefGoogle Scholar
  59. Peralta-Yahya P, Keasling J (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162CrossRefGoogle Scholar
  60. Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259CrossRefGoogle Scholar
  61. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d'Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325CrossRefGoogle Scholar
  62. Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C (2004) Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5:29–44CrossRefGoogle Scholar
  63. Rude M, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281CrossRefGoogle Scholar
  64. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108CrossRefGoogle Scholar
  65. Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 15 years research on lactic acid production with yeast — ready for the market? Biotechnol Genet Eng Rev 27:1–28Google Scholar
  66. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 363–372Google Scholar
  67. Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13:249–257CrossRefGoogle Scholar
  68. Simmons L, Reilly D, Klimowski L, Raju T, Meng G, Sims P, Hong K, Shields R, Damico L, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147CrossRefGoogle Scholar
  69. Somerville C, Youngs H, Taylor C, Davis S, Long S (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefGoogle Scholar
  70. Sørensen HP (2010) Towards universal systems for recombinant gene expression. Microb Cell Fact 9:27CrossRefGoogle Scholar
  71. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516CrossRefGoogle Scholar
  72. Steen E, Chan R, Prasad N, Myers S, Petzold C, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36CrossRefGoogle Scholar
  73. Steen E, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre S, Keasling J (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefGoogle Scholar
  74. Stolz A, Wolf DH (2010) Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochim Biophys Acta 1803:694–705CrossRefGoogle Scholar
  75. Sugimoto T, Morimoto A, Nariyama M, Kato T, Park E (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64CrossRefGoogle Scholar
  76. Sundström H, Enfors S (2008) Software sensors for fermentation processes. Bioprocess Biosyst Eng 31:145–152CrossRefGoogle Scholar
  77. Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL (2009) High yield production of heterologous proteins with Escherichia coli. Defence Sci J 59:137–146Google Scholar
  78. Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2006) Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 72:5492–5499CrossRefGoogle Scholar
  79. Venkatesh KV (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98CrossRefGoogle Scholar
  80. Vuolanto A, von Weymarn N, Kerovuo J, Ojamo H, Leisola M (2001) Phytase production by high cell density culture of recombinant Bacillus subtilis. Biotechnol Lett 761–766Google Scholar
  81. Waites MJ, Morgan NL, Rockey JS, Higton G (2001) Industrial microbiology: an introduction. Blackwell Science, OxfordGoogle Scholar
  82. Walsh G (2005) Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol 67:151–159CrossRefGoogle Scholar
  83. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310CrossRefGoogle Scholar
  84. Wu Q, Chen T, Gan Y, Chen X, Zhao X (2007) Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biotechnol 76(4):783–794CrossRefGoogle Scholar
  85. Yan Y, Liao J (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479CrossRefGoogle Scholar
  86. Yang T, Kim T, Kang H, Lee S, Lee E, Lim S, Oh S, Song A, Park S, Lee S (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160CrossRefGoogle Scholar
  87. Yuwono SD, Kokugan T (2008) Study of the effects of temeprature and pH on lactic acid production from fresh cassava roots in tofu liquid watse by Streptococcus bovis. Biochem Eng J 40:175–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Danilo Porro
    • 1
  • Brigitte Gasser
    • 2
    • 3
  • Tiziana Fossati
    • 1
  • Michael Maurer
    • 2
    • 4
  • Paola Branduardi
    • 1
  • Michael Sauer
    • 2
    • 3
    • 4
  • Diethard Mattanovich
    • 2
    • 3
  1. 1.Department of Biotechnology and BiosciencesUniversity of Milan BicoccaMilanItaly
  2. 2.Department of BiotechnologyUniversity of Natural Resources and Life Sciences, ViennaViennaAustria
  3. 3.Austrian Centre of Industrial Biotechnology (ACIB GmbH)ViennaAustria
  4. 4.School of BioengineeringUniversity of Applied Sciences FH Campus WienViennaAustria

Personalised recommendations