Skip to main content
Log in

Bacterial degradation of bile salts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bile salts are surface-active steroid compounds. Their main physiological function is aiding the digestion of lipophilic nutrients in intestinal tracts of vertebrates. Many bacteria are capable of transforming and degrading bile salts in the digestive tract and in the environment. Bacterial bile salt transformation and degradation is of high ecological relevance and also essential for the biotechnological production of steroid drugs. While biotechnological aspects have been reviewed many times, the physiological, biochemical and genetic aspects of bacterial bile salt transformation have been neglected. This review provides an overview of the reaction sequence of bile salt degradation and on the respective enzymes and genes exemplified with the degradation pathway of the bile salt cholate. The physiological adaptations for coping with the toxic effects of bile salts, recent biotechnological applications and ecological aspects of bacterial bile salt metabolism are also addressed. As the pathway for bile salt degradation merges with metabolic pathways for bacterial transformation of other steroids, such as testosterone and cholesterol, this review provides helpful background information for metabolic engineering of steroid-transforming bacteria in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Barnes PJ, Bilton RF, Mason AN, Fernandez F, Hill MJ (1975) The coupling of anaerobic steroid dehydrogenation to nitrate reduction in Pseudomonas N.C.I.B. 10590 and Clostridium paraputrificum. Biochem Soc Trans 3:299–301

    CAS  Google Scholar 

  • Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  CAS  Google Scholar 

  • Bina JE, Mekalanos JJ (2001) Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69:4681–4685

    Article  CAS  Google Scholar 

  • Bina JE, Provenzano D, Wang C, Bina XR, Mekalanos JJ (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181

    Article  CAS  Google Scholar 

  • Bird CW, Lynch JM, Pirt FJ, Reid WW (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230:473–474

    Article  CAS  Google Scholar 

  • Birkenmaier A, Holert J, Erdbrink H, Moeller HM, Friemel A, Schoenenberger R, Suter MJ, Klebensberger J, Philipp B (2007) Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol 189:7165–7173

    Article  CAS  Google Scholar 

  • Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481

    Article  CAS  Google Scholar 

  • Bortolini O, Medici A, Poli S (1997) Biotransformations on steroid nucleus of bile acids. Steroids 62:564–577

    Article  CAS  Google Scholar 

  • Capyk JK, D'Angelo I, Strynadka NC, Eltis LD (2009) Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 284:9937–9946

    Article  CAS  Google Scholar 

  • Carson JD, Jenkins RL, Wilson EM, Howell WM, Moore R (2008) Naturally occurring progesterone in loblolly pine (Pinus taeda L.): a major steroid precursor of environmental androgens. Environ Toxicol Chem 27:1273–1278

    Article  CAS  Google Scholar 

  • Chiang YR, Ismail W, Muller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282:13240–13249

    Article  CAS  Google Scholar 

  • Combalbert S, Hernandez-Raquet G (2010) Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 86:1671–1692

    Article  CAS  Google Scholar 

  • Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43:5–18

    Article  CAS  Google Scholar 

  • Dresen C, Lin LY, D'Angelo I, Tocheva EI, Strynadka N, Eltis LD (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285:22264–22275

    Article  CAS  Google Scholar 

  • Dumas B, Brocard-Masson C, Assemat-Lebrun K, Achstetter T (2006) Hydrocortisone made in yeast: metabolic engineering turns a unicellular microorganism into a drug-synthesizing factory. Biotechnol J 1:299–307

    Article  CAS  Google Scholar 

  • Elkins CA, Mullis LB (2006) Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J Bacteriol 188:1191–1195

    Article  CAS  Google Scholar 

  • Elkins CA, Savage DC (1998) Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J Bacteriol 180:4344–4349

    CAS  Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  Google Scholar 

  • Fahrbach M, Krauss M, Preiss A, Kohler HP, Hollender J (2010) Anaerobic testosterone degradation in Steroidobacter denitrificans—identification of transformation products. Environ Pollut 158:2572–2581

    Article  CAS  Google Scholar 

  • Fine JM, Sorensen PW (2010) Production and fate of the sea lamprey migratory pheromone. Fish Physiol Biochem 36:1013–1020

    Article  CAS  Google Scholar 

  • Fine JM, Vrieze LA, Sorensen PW (2004) Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. J Chem Ecol 30:2091–2110

    Article  CAS  Google Scholar 

  • Florin C, Kohler T, Grandguillot M, Plesiat P (1996) Comamonas testosteroni 3-ketosteroid-Δ4(5 α)-dehydrogenase: gene and protein characterization. J Bacteriol 178:3322–3330

    CAS  Google Scholar 

  • Göhler A, Xiong G, Paulsen S, Trentmann G, Maser E (2008) Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J Biol Chem 283:17380–17390

    Article  CAS  Google Scholar 

  • Grimm C, Maser E, Mobus E, Klebe G, Reuter K, Ficner R (2000) The crystal structure of 3α -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J Biol Chem 275:41333–41339

    Article  CAS  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  CAS  Google Scholar 

  • Hagey LR, Moller PR, Hofmann AF, Krasowski MD (2010) Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 83:308–321

    CAS  Google Scholar 

  • Hancock RE (1997) The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42

    Article  CAS  Google Scholar 

  • Hashimoto S, Hayakawa S (1977) Microbiological degradation of bile acids. Metabolites formed from 3-(3aα-hexahydro-7aβ-methyl-1,5-dioxoindan-4α-yl) propionic acid by Streptomyces rubescens. Biochem J 164:715–726

    CAS  Google Scholar 

  • Hayakawa S (1982) Microbial transformation of bile acids. A unified scheme for bile acid degradation, and hydroxylation of bile acids. Z Allg Mikrobiol 22:309–326

    Article  CAS  Google Scholar 

  • Hayakawa S, Fujiwara T (1977) Microbiological degradation of bile acids, further degradation of a cholic acid metabolite containing the hexahydroindane nucleus by Corynebacterium equi. Biochem J 162:387–397

    CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    CAS  Google Scholar 

  • Hille R, Rértey J, Bartlewski-Hof U, Reichenbecher W, Schink B (1998) Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiol Rev 22:489–501

    Article  CAS  Google Scholar 

  • Hoffmann F, Maser E (2007) Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev 39:87–144

    Article  CAS  Google Scholar 

  • Hofmann AF, Mysels KJ (1988) Bile salts as biological surfactants. Colloids Surfaces 30:145–173

    Article  CAS  Google Scholar 

  • Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T (2001) Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147:3367–3375

    CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Yamamoto T, Kudo T (2003a) Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni. Appl Environ Microbiol 69:2139–2152

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Yamamoto T, Kudo T (2003b) A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69:4421–4430

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Kudo T (2004a) The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 92:143–154

    Article  CAS  Google Scholar 

  • Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T (2004b) Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 324:597–604

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T (2005) Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 71:5275–5281

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Kudo T (2006) ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids. J Steroid Biochem Mol Biol 101:78–84

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Malon M, Yamamoto T, Kudo T (2008) Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441. J Bacteriol 190:5545–5554

    Article  CAS  Google Scholar 

  • Horinouchi M, Kurita T, Hayashi T, Kudo T (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263

    Article  CAS  Google Scholar 

  • Hu Y, van der Geize R, Besra GS, Gurcha SS, Liu A, Rohde M, Singh M, Coates A (2010) 3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75:107–121

    Article  CAS  Google Scholar 

  • Hylemon PB, Harder J (1998) Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 22:475–488

    Article  CAS  Google Scholar 

  • Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P (2009) Bile acids as regulatory molecules. J Lipid Res 50:1509–1520

    Article  CAS  Google Scholar 

  • Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE 4:e8099

    Article  CAS  Google Scholar 

  • Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65:684–699

    Article  CAS  Google Scholar 

  • Kendall SL, Burgess P, Balhana R, Withers M, Ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG (2010) Cholesterol utilization in Mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156:1362–1371

    Article  CAS  Google Scholar 

  • Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474

    Article  CAS  Google Scholar 

  • Kim D, Lee JS, Kim J, Kang SJ, Yoon JH, Kim WG, Lee CH (2007) Biosynthesis of bile acids in a variety of marine bacterial taxa. J Microbiol Biotechnol 17:403–407

    CAS  Google Scholar 

  • Knol J, Bodewits K, Hessels GI, Dijkhuizen L, van der Geize R (2008) 3-Keto-5α-steroid Δ(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410:339–346

    Article  CAS  Google Scholar 

  • Koga J, Kubota H, Gomi S, Umemura K, Ohnishi M, Kono T (2006) Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol 140:1475–1483

    Article  CAS  Google Scholar 

  • Konikoff FM (2003) Gallstones—approach to medical management. MedGenMed 5:8

    Google Scholar 

  • Lack NA, Yam KC, Lowe ED, Horsman GP, Owen RL, Sim E, Eltis LD (2010) Characterization of a carbon–carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J Biol Chem 285:434–443

    Article  CAS  Google Scholar 

  • Lee CY, Liu WH (1992) Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers. Appl Microbiol Biotechnol 36:598–603

    Article  CAS  Google Scholar 

  • Leppik RA (1982) Deoxycholic acid degradation by a Pseudomonas species. Acidic intermediates from the initial part of the catabolic pathway. Biochem J 202:747–751

    CAS  Google Scholar 

  • Leppik RA (1983) Deoxycholic acid degradation by a Pseudomonas sp. Acidic intermediates with A-ring unsaturation. Biochem J 210:829–836

    CAS  Google Scholar 

  • Linares M, Pruneda-Paz JL, Reyna L, Genti-Raimondi S (2008) Regulation of testosterone degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 112:145–150

    Article  CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345

    Article  CAS  Google Scholar 

  • Mahato SB, Mukherjee E, Banerjee S (1994) Advances in microbial biotechnology of bile acids. Biotechnol Adv 12:357–391

    Article  CAS  Google Scholar 

  • Mallonee DH, Hylemon PB (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178:7053–7058

    CAS  Google Scholar 

  • Mallonee DH, Adams JL, Hylemon PB (1992) The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. J Bacteriol 174:2065–2071

    CAS  Google Scholar 

  • Maneerat S, Nitoda T, Kanzaki H, Kawai F (2005) Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 67:679–683

    Article  CAS  Google Scholar 

  • Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD (2008) The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283:35368–35374

    Article  CAS  Google Scholar 

  • Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804–816

    Article  CAS  Google Scholar 

  • Morii S, Fujii C, Miyoshi T, Iwami M, Itagaki E (1998) 3-Ketosteroid-Δ1-dehydrogenase of Rhodococcus rhodochrous: sequencing of the genomic DNA and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem 124:1026–1032

    CAS  Google Scholar 

  • Moschetta A, Xu F, Hagey LR, van Berge-Henegouwen GP, van Erpecum KJ, Brouwers JF, Cohen JC, Bierman M, Hobbs HH, Steinbach JH, Hofmann AF (2005) A phylogenetic survey of biliary lipids in vertebrates. J Lipid Res 46:2221–2232

    Article  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  Google Scholar 

  • Nonappa, Maitra U (2008) Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org Biomol Chem 6:657–669

    Article  CAS  Google Scholar 

  • Oppermann UC, Maser E (1996) Characterization of a 3α-hydroxysteroid dehydrogenase/carbonyl reductase from the Gram-negative bacterium Comamonas testosteroni. Eur J Biochem 241:744–749

    Article  CAS  Google Scholar 

  • Owen RW, Bilton RF (1983) The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 under anaerobic conditions. Biochem J 216:641–654

    CAS  Google Scholar 

  • Owen RW, Bilton RF, Tenneson ME (1977) The degradation of cholic acid and deoxycholic acid by Bacteroides species under strict anaerobic conditions. Biochem Soc Trans 5:1711–1713

    CAS  Google Scholar 

  • Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380

    Article  CAS  Google Scholar 

  • Park RJ, Dunn NW, Ide JA (1986) A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp. Steroids 48:439–450

    Article  CAS  Google Scholar 

  • Payne CM, Crowley-Skillicorn C, Holubec H, Dvorak K, Bernstein C, Moyer MP, Garewal H, Bernstein H (2009) Deoxycholate, an endogenous cytotoxin/genotoxin, induces the autophagic stress-survival pathway: implications for colon carcinogenesis. J Toxicol 2009:785907

    Google Scholar 

  • Perez C, Falero A, Llanes N, Hung BR, Herve ME, Palmero A, Marti E (2003) Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria. J Ind Microbiol Biotechnol 30:623–626

    Article  CAS  Google Scholar 

  • Petrusma M, Dijkhuizen L, van der Geize R (2009) Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9α-hydroxylase, a two-component iron–sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 75:5300–5307

    Article  CAS  Google Scholar 

  • Philipp B, Erdbrink H, Suter MJ, Schink B (2006) Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1. Arch Microbiol 185:192–201

    Article  CAS  Google Scholar 

  • Plesiat P, Nikaido H (1992) Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6:1323–1333

    Article  CAS  Google Scholar 

  • Polkinghorne CN, Olson JM, Gallaher DG, Sorensen PW (2001) Larval sea lamprey release two bile acids to the water at arate sufficient to produce detectable riverine pheromone plumes. Fish Phys Biochem 24:15–30

    Article  CAS  Google Scholar 

  • Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S (2004) TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 186:1430–1437

    Article  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  Google Scholar 

  • Rösch V, Denger K, Schleheck D, Smits TH, Cook AM (2008) Different bacterial strategies to degrade taurocholate. Arch Microbiol 190:11–18

    Article  CAS  Google Scholar 

  • Rosloniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043

    Article  CAS  Google Scholar 

  • Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  Google Scholar 

  • Schubert K, Böhme KH, Ritter F, Hörhold C (1968) Microbial degradation of progesterone to α-ketoglutaric acid and succinic acid. Biochim Biophys Acta 152:401–408

    CAS  Google Scholar 

  • Shimizu T, Jikumaru Y, Okada A, Okada K, Koga J, Umemura K, Minami E, Shibuya N, Hasegawa M, Kodama O, Nojiri H, Yamane H (2008) Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry 69:973–981

    Article  CAS  Google Scholar 

  • Sih CJ, Tai HH, Tsong YY, Lee SS, Coombe RG (1968) Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry 7:808–818

    Article  CAS  Google Scholar 

  • Smith MG, Park RJ (1984) Effect of restricted aeration on catabolism of cholic acid by two Pseudomonas species. Appl Environ Microbiol 48:108–113

    CAS  Google Scholar 

  • Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Anderson KR, Hoye TR (2005a) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328

    Article  CAS  Google Scholar 

  • Sorensen PW, Pinillos M, Scott AP (2005b) Sexually mature male goldfish release large quantities of androstenedione into the water where it functions as a pheromone. Gen Comp Endocrinol 140:164–175

    Article  CAS  Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  Google Scholar 

  • Szentirmai A (1990) Microbial physiology of sidechain degradation of sterols. J Ind Microbiol 6:101–116

    Article  CAS  Google Scholar 

  • Tenneson ME, Owen RW, Mason AN (1977) The anaerobic side-chain cleavage of bile acids by Escherichia coli isolated from human faeces. Biochem Soc Trans 5:1758–1760

    CAS  Google Scholar 

  • Tenneson ME, Bilton RF, Mason AN (1978a) The degradation of lithocholic acid by Pseudomonas Spp NCIB 10590. FEBS Lett 91:140–143

    Article  CAS  Google Scholar 

  • Tenneson ME, Bilton RF, Mason AN (1978b) The degradation of taurocholic acid and glycocholic acid by Pseudomonas spp. N.C.I.B. 10590. Biochem Soc Trans 6:975–979

    CAS  Google Scholar 

  • Tenneson ME, Baty JD, Bilton RF, Mason AN (1979) The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590. Biochem J 184:613–618

    CAS  Google Scholar 

  • Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    CAS  Google Scholar 

  • van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952

    Article  CAS  Google Scholar 

  • Watanabe M, Po L (1974) Testosterone uptake by membrane vesicles of Pseudomonas testosteroni. Biochim Biophys Acta 345:419–429

    Article  CAS  Google Scholar 

  • Watson D, Sleator RD, Hill C, Gahan CG (2008) Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol 8:176

    Article  CAS  Google Scholar 

  • Weaver EA, Kenney E, Wall ME (1960) Effect of concentration on the microbiological hydroxylation of progesterone. Appl Microbiol 8:345–348

    CAS  Google Scholar 

  • Xiong G, Martin HJ, Maser E (2003) Identification and characterization of a novel translational repressor of the steroid-inducible 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. J Biol Chem 278:47400–47407

    Article  CAS  Google Scholar 

  • Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WRJ, Strynadka N, Eltis LD (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5:e1000344

    Article  CAS  Google Scholar 

  • Yokota A, Veenstra M, Kurdi P, van Veen HW, Konings WN (2000) Cholate resistance in Lactococcus lactis is mediated by an ATP-dependent multispecific organic anion transporter. J Bacteriol 182:5196–5201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wants to thank current and former co-workers Antoinette Birkenmaier, Henrike Erdbrink, Johannes Holert, Nina Jagmann and Vemparthan Suvekbala for their valuable contributions. The cooperation partners Heiko M. Moeller (Konstanz) and Marc J.-F. Suter (Zürich) are highly acknowledged for their support in structural analysis of steroid compounds. Research on bile salt degradation in the author’s laboratory is funded by DFG (projects PH71/2-1 + 3-1 and B9 in SFB 454), DAAD, Stiftung Umwelt und Wohnen and the University of Konstanz (AFF project 58/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Philipp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philipp, B. Bacterial degradation of bile salts. Appl Microbiol Biotechnol 89, 903–915 (2011). https://doi.org/10.1007/s00253-010-2998-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2998-0

Keywords

Navigation