Skip to main content
Log in

Development and strategies of cell-culture technology for influenza vaccine

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Influenza is a pandemic contagious disease and causes human deaths and huge economic destruction of poultry in the world. In order to control and prevent influenza, mainly type A, influenza vaccine for human and poultry were available since the 1940s and 1920s, respectively. In the development of vaccine production, influenza viruses were cultured originally from chicken embryos to anchorage-dependent cell lines, such as MDCK and Vero. The anchorage-independent lines have also been used to produce influenza virus, such as PER.C6 and engineering modified MDCK and Vero. During the process of influenza vaccine production, the common problem faced by all producers is how to improve the titer of influenza virus. This paper focuses on the developments of cell culture for influenza virus vaccine production, limitations of cell culture, and relative strategies for improvement virus yields in cell-culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Astley K, Naciri M, Racher A, Al-Rubeai M (2007) The role of p21cip1 in adaptation of CHO cells to suspension and protein-free culture. J Biotechnol 130:282–290

    Article  CAS  Google Scholar 

  • Barbosa T, Zavala G, Cheng S (2008) Molecular characterization of three recombinant isolates of avian leukosis virus obtained from contaminated Marek’s disease vaccines. Avian Dis 52:245–252

    Article  Google Scholar 

  • Barrett PN, Portsmouth D, Ehrlich HJ (2010) Developing cell culture-derived pandemic vaccines. Curr Opin Mol Ther 12:21–30

    CAS  Google Scholar 

  • Brands R, Visser J, Medema J, Palache AM, van Scharrenburg GJ (1999) Influvac: a safe Madin Darby Canine Kidney (MDCK) cell culture-based influenza vaccine. Dev Biol Stand 98:93–100

    CAS  Google Scholar 

  • Bublot M, Pritchard N, Swayne DE, Selleck P, Karaca K, Suarez DL, Audonnet JC, Mickle TR (2006) Development and use of fowlpox vectored vaccines for avian influenza. Ann N Y Acad Sci 1081:193–201

    Article  Google Scholar 

  • Butler M, BurgenerA PatrickM, Berry M, Moffatt D, Huzel N, Barnabé N, Coombs K (2000) Application of a serum-free media for the growth of Vero cells and the production of reovirus. Biotechnol Prog 16:854–858

    Article  CAS  Google Scholar 

  • Chen H, Bu Z (2009) Development and application of avian influenza vaccines in China. Curr Top Microbiol Immunol 333:153–162

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1994) Anchorage-dependent animal cell culture in packed beds with airlift driven liquid circulation: a theoretical analysis of oxygen transfer and comparison with stirred tank microcarrier culture system. Trans Inst Chem Eng 72C:92–94

    Google Scholar 

  • Choi SK, Chang HN, Lee GM, Kim IH, Oh DJ (1995) High cell density perfusion cultures of anchorage-dependent Vero cells in a depth filter perfusion system. Cytotechnology 17:173–183

    Article  CAS  Google Scholar 

  • Chu C, Lugovtsev V, Golding H, Betenbaugh M, Shiloach J (2009) Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proc Natl Acad Sci U S A 106:14802–14807

    Article  CAS  Google Scholar 

  • de Bruijn IA, Nauta J, Gerez L, Palache AM (2004) Virosomal influenza vaccine: a safe and effective influenza vaccine with high efficacy in elderly and subjects with low pre-vaccination antibody titers. Virus Res 103:139–145

    Article  Google Scholar 

  • Doroshenko A, Halperin SA (2009) Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines 8:679–688

    Article  CAS  Google Scholar 

  • Edwards KM, Sabow A, Pasternak A, Boslego JW (2009) Strategies for broad global access to pandemic influenza vaccines. Curr Top Microbiol Immunol 333:471–493

    Article  Google Scholar 

  • Ehrlich HJ, Müller M, Oh HM, Tambyah PA, Joukhadar C, Montomoli E, Fisher D, Berezuk G, Fritsch S, Löw-Baselli A, Vartian N, Bobrovsky R, Pavlova BG, Pöllabauer EM, Kistner O, Barrett PN, Baxter H5N1 Pandemic Influenza Vaccine Clinical Study Team (2008) A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N Engl J Med 358:2573–2584

    Article  CAS  Google Scholar 

  • Falk K, Rözschke O, Deres K, Metzger J, Jung G, Rammensee HG (1991) Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 174:425–434

    Article  CAS  Google Scholar 

  • Genzel Y, Behrendt I, König S, Sann H, Reichl U (2004) Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 22:2202–2008

    Article  CAS  Google Scholar 

  • Genzel Y, Ritter JB, König S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21:58–69

    Article  CAS  Google Scholar 

  • Genzel Y, Fischer M, Reichl U (2006) Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 24:3261–3272

    Article  CAS  Google Scholar 

  • Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28:1376–1389

    Article  CAS  Google Scholar 

  • Halperin SA, Smith B, Mabrouk T, Germain M, Trépanier P, Hassell T, Treanor J, Gauthier R, Mills EL (2002) Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine 20:1240–1247

    Article  CAS  Google Scholar 

  • Hassell T, Butler M (1990) Adaptation to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J Cell Sci 96:501–508

    CAS  Google Scholar 

  • Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30:29–41

    Article  CAS  Google Scholar 

  • Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124–134

    Article  CAS  Google Scholar 

  • Hornícková Z (1997) Different progress of MDCK cell death after infection by two different influenza virus isolates. Cell Biochem Funct 15:87–93

    Article  Google Scholar 

  • Hu AY, Weng TC, Tseng YF, Chen YS, Wu CH, Hsiao S, Chou AH, Chao HJ, Gu A, Wu SC, Chong P, Lee MS (2008) Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine 26:5736–5740

    Article  CAS  Google Scholar 

  • Ikić D (1969) Experience in Yugoslavia with live influenza vaccine prepared from an attenuated A2-Hong Kong-68 strain. Bull World Health Organ 41:608–609

    Google Scholar 

  • Jayme DW, Blackman KE (1985) Culture media for propagation of mammalian cells, viruses, and other biologicals. Adv Biotechnol Processes 5:1–30

    CAS  Google Scholar 

  • Katz J, Webster R (1992) Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J Gen Virol 73:1159–1165

    Article  CAS  Google Scholar 

  • Katz JM, Naeve CW, Webster RG (1987) Host cell-mediated variation in H3N2 influenza viruses. Virology 156:386–395

    Article  CAS  Google Scholar 

  • Kaverin NV, Webster RG (1995) Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity. J Virol 69:2700–2703

    CAS  Google Scholar 

  • Kessler N, Thomas-Roche G, Gerentes L, Aymard M (1999) Suitability of MDCK cells grown in serum-free medium for influenza virus production. Dev Biol Stand 98:13–21

    CAS  Google Scholar 

  • Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426–439

    Article  CAS  Google Scholar 

  • Kovar J, Franek C (1987) Iron compounds at high concentrations enable mouse hybridoma and myeloma cells to grow in protein-free medium. Eur Congr Biotechnol 3:614–617

    Google Scholar 

  • Kunz C, Hofmann H, Bachmayer H, Liehl E, Moritz AJ (1977) Clinical trials with a new influenza subunit vaccine in adults and children. Dev Biol Stand 39:297–302

    CAS  Google Scholar 

  • Kürsteiner O, Moser C, Lazar H, Durrer P (2006) Inflexal V—the influenza vaccine with the lowest ovalbumin content. Vaccine 24:6632–6635

    Article  Google Scholar 

  • Kuwert EK, Höher PG, Werner J, Scheiermann N, Thraenhart O, Müller B, Kleber G (1977) Neuraminidase antibodies in serum and nasal washings after immunization by means of live and killed whole virion, split virion and subunit (HA and N) influenza vaccines. Dev Biol Stand 39:77–83

    CAS  Google Scholar 

  • Latham T, Galarza JM (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol 75:6154–6165

    Article  CAS  Google Scholar 

  • Litwin J (1992) The growth of Vero cells in suspension as cell-aggregates in serum-free media. Cytotechnology 10:169–174

    Article  CAS  Google Scholar 

  • Lohr V, Rath A, Genzel Y, Jordan I, Sandig V, Reichl U (2009) New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 27:4975–4982

    Article  CAS  Google Scholar 

  • Lowy RJ (2003) Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms. Int Rev Immunol 22:425–449

    Article  CAS  Google Scholar 

  • Lyles DS (2000) Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 64:709–724

    Article  CAS  Google Scholar 

  • Mendonça RZ, Arrózio SJ, Antoniazzi MM, Ferreira JMC, Pereira CA (2002) Metabolic active-high density Vero cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding. J Biotechnol 97:13–22

    Article  Google Scholar 

  • Merten OW (2002) Development of serum-free media for cell growth and production of viruses/viral vaccines—safety issues of animal products used in serum-free media. Dev Biol (Basel) 111:2332–2357

    Google Scholar 

  • Merten OW, Hannoun C, Manuguerra JC, Ventre F, Petres S (1996) Production of influenza virus in cell cultures for vaccine preparation. Adv Exp Med Biol 397:141–151

    CAS  Google Scholar 

  • Merten OW, Manuguerra JC, Hannoun C, van der Werf S (1999) Production of influenza virus in serum-free mammalian cell cultures. Dev Biol Stand 98:23–37

    CAS  Google Scholar 

  • Möhler L, Flockerzi D, Sann H, Reichl U (2005) Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng 90:46–58

    Article  Google Scholar 

  • Morris SJ, Price GE, Barnett JM, Hiscox SA, Smith H, Sweet C (1999) Role of neuraminidase in influenza virus-induced apoptosis. J Gen Virol 80:137–146

    CAS  Google Scholar 

  • Nagata K, Kawaguchi A, Naito T (2008) Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18:247–260

    Article  CAS  Google Scholar 

  • Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S (2009) Influenza virus morphogenesis and budding. Virus Res 143:147–161

    Article  CAS  Google Scholar 

  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5:1157–1163

    Article  CAS  Google Scholar 

  • Neumann G, Kawaoka Y (1999) Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Adv Virus Res 53:265–300

    Article  CAS  Google Scholar 

  • Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133

    Article  CAS  Google Scholar 

  • Oh DY, Barr IG, Mosse JA, Laurie KL (2008) MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clin Microbiol 46:2189–2194

    Article  CAS  Google Scholar 

  • Paillet C, Forno G, Kratje R, Etcheverrigaray M (2009) Suspension-Vero cell cultures as a platform for viral vaccine production. Vaccine 27:6464–6467

    Article  CAS  Google Scholar 

  • Patel A, Tran K, Gray M, Li Y, Ao Z, Yao X, Kobasa D, Kobinger GP (2009) Evaluation of conserved and variable influenza antigens for immunization against different isolates of H5N1 viruses. Vaccine 27:3083–3089

    Article  CAS  Google Scholar 

  • Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F (2001) The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19:2716–2721

    Article  CAS  Google Scholar 

  • Quesney S, Marc A, Gerdil C, Gimenez C, Marvel J, Richard Y, Meignier B (2003) Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology 42:1–11

    Article  CAS  Google Scholar 

  • Romanova J, Katinger D, Ferko B, Vcelar B, Sereinig S, Kuznetsov O, Stukova M, Erofeeva M, Kiselev O, Katinger H, Egorov A (2004) Live cold-adapted influenza A vaccine produced in Vero cell line. Virus Res 103:187–193

    Article  CAS  Google Scholar 

  • Schild GC, Oxford JS, de Jong JC, Webster RG (1983) Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709

    Article  CAS  Google Scholar 

  • Schulze-Horsel J, Schulze M, Agalaridis G, Genzel Y, Reichl U (2009) Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production—flow cytometry and mathematical modeling. Vaccine 27:2712–2722

    Article  CAS  Google Scholar 

  • Sidorenko Y, Reichl U (2004) Structured model of influenza virus replication in MDCK cells. Biotechnol Bioeng 88:1–14

    Article  CAS  Google Scholar 

  • Smith KA, Colvin CJ, Weber PS, Spatz SJ, Coussens PM (2008) High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases. Vaccine 26:3778–3782

    Article  CAS  Google Scholar 

  • Stanley WM (1945) The preparation and properties of influenza virus vaccines concentrated and purified by differential centrifugation. J Exp Med 81:193–218

    Article  CAS  Google Scholar 

  • Stech J, Garn H, Wegmann M, Wagner R, Klenk HD (2005) A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat Med 11:683–689

    Article  CAS  Google Scholar 

  • Stray SJ, Air GM (2001) Apoptosis by influenza viruses correlates with efficiency of viral mRNA synthesis. Virus Res 77:3–17

    Article  CAS  Google Scholar 

  • Takada A, Kuboki N, Okazaki K, Ninomiya A, Tanaka H, Ozaki H, Itamura S, Nishimura H, Enami M, Tashiro M, Shortridge KF, Kida H (1999) Avirulent avian influenza virus as a vaccine strain against a potential human pandemic. J Virol 73:8303–8307

    CAS  Google Scholar 

  • Tharmalingam T, Ghebeh H, Wuerz T, Butler M (2008) Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Mol Biotechnol 39:167–177

    Article  CAS  Google Scholar 

  • Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D (2001) Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine 19:3444–3450

    Article  CAS  Google Scholar 

  • Vaidya NK, Huang H, Takagi S (2007) Modelling HA protein-mediated interaction between an influenza virus and a healthy cell: pre-fusion membrane deformation. Math Med Biol 24:251–270

    Article  Google Scholar 

  • Vester D, Rapp E, Gade D, Genzel Y, Reichl U (2009) Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9:3316–3327

    Article  CAS  Google Scholar 

  • Voeten JTM, Brands R, Palache AM, van Scharrenberg GJM, Rimmelzwaan GF, Osterhaus ADME, Claas ECJ (1999) Characterization of high-growth reassortant influenza A viruses generated in MDCK cells cultured in serum-free medium. Vaccine 17:1942–1950

    Article  CAS  Google Scholar 

  • Wahl A, Sidorenko Y, Dauner M, Genzel Y, Reichl U (2008) Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution. Biotechnol Bioeng 101:135–152

    Article  CAS  Google Scholar 

  • Wanich N, Bencharitiwong R, Tsai T, Nowak-Wegrzyn A (2010) In vitro assessment of the allergenicity of a novel influenza vaccine produced in dog kidney cells in individuals with dog allergy. Ann Allergy Asthma Immunol 104:426–433

    Article  CAS  Google Scholar 

  • Watabe S, Xin KQ, Ihata A, Liu LJ, Honsho A, Aoki I, Hamajima K, Wahren B, Okuda K (2001) Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine 19:4434–4444

    Article  CAS  Google Scholar 

  • Webster RG, Laver WG, Kilbourne ED (1968) Reactions of antibodies with surface antigens of influenza virus. J Gen Virol 3:315–326

    Article  CAS  Google Scholar 

  • Zavala G, Cheng S (2006) Experimental infection with avian leukosis virus isolated from Marek's disease vaccines. Avian Dis 50:232–237

    Article  Google Scholar 

  • Zhirnov O, Klenk HD (2003) Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology 313:198–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, SZ., Jiao, PR., Qi, WB. et al. Development and strategies of cell-culture technology for influenza vaccine. Appl Microbiol Biotechnol 89, 893–902 (2011). https://doi.org/10.1007/s00253-010-2973-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2973-9

Keywords

Navigation