Skip to main content

Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae

Abstract

Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. Vector name derived from the Gateway manual, Invitrogen.

References

  • Azuma H, Banno K, Yoshimura T (1976) Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent. Br J Pharmacol 58:483–488

    CAS  Google Scholar 

  • Balderas-Hernández VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernández-Chávez G, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 2:8–19

    Google Scholar 

  • Bhuiya MW, Liu CJ (2010) Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J Biol Chem 285:277–285

    CAS  Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  • Branduardi P, Fossati T, Sauer M, Pagani R, Mattanovich D, Porro D (2007) Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE 2:e1092

    Article  Google Scholar 

  • Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson RE, Dimberg LH (2003) Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. J Agric Food Chem 51:594–600

    CAS  Article  Google Scholar 

  • Chakrabarti R, Subramaniam V, Abdalla S, Jothy S, Prud’homme GJ (2009) Tranilast inhibits the growth and metastasis of mammary carcinoma. Anticancer Drugs 20:334–345

    CAS  Article  Google Scholar 

  • Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    CAS  Article  Google Scholar 

  • Collins FW (1989) Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37:60–66

    CAS  Article  Google Scholar 

  • Collins FW, Mullin WJ (1988) High performance liquid chromatographic determination of avenanthramides, N-aroylanthranilic acid alkaloids from oats. J Chromatogr 445:363–370

    CAS  Article  Google Scholar 

  • Cui H, Gensini M, Kataria R, Twaddle T, Zhang J, Wadsworth S, Petrilli J, Rodgers K, diZerega G, Cooper K (2009) Reducing post-surgical adhesions utilizing a drug-enhanced device: sodium carboxymethylcellulose aqueous gel/poly(p-dioxanone) and tranilast. Biomed Mater 4:015001

    Article  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (paclitaxel) production. Metab Eng 10:201–206

    CAS  Article  Google Scholar 

  • Fagerlund A, Sunnerheim K, Dimberg LH (2009) Radical-scavenging and antioxidant activity of avenanthramides. Food Chem 113:550–556

    CAS  Article  Google Scholar 

  • Fosdick LS, Starke AC Jr (1940) Some alkamine esters of 4-acetylferulic and 3, 4-dimethoxycinnamic acids. J Am Chem Soc 62:3352–3355

    CAS  Article  Google Scholar 

  • Funk C, Brodelius PE (1990) Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr.: III. Conversion of 4-methoxycinnamic acids into 4-hydroxybenzoic acids. Plant Physiol 94:102–108

    CAS  Article  Google Scholar 

  • Gietz RD, Woods RA (2002) Tranformation of yeast by the LiAc/SS carrier DNA/PEG method. Methods Enzymol 350:87–96

    CAS  Article  Google Scholar 

  • Guo W, Wise ML, Collins FW, Meydani M (2008) Avenanthramides, polyphenols from oats, inhibit IL-1β-induced NF-kB activation in endothelial cells. Free Radical Biol Med 44:415–429

    CAS  Article  Google Scholar 

  • Guo T, Chen WQ, Zhang C, Zhao YX, Zhang Y (2009) Chymase activity is closely related with plaque vulnerability in a hamster model of atherosclerosis. Atherosclerosis 207:59–67

    CAS  Article  Google Scholar 

  • Hamberger B, Hahlbrock K (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA 101:2209–2214

    CAS  Article  Google Scholar 

  • Heuschkel S, Wohlrab J, Schmaus G, Neubert RH (2008) Modulation of dihydroavenanthramide D release and skin penetration by 1,2-alkanediols. Eur J Pharm Biopharm 70:239–247

    CAS  Article  Google Scholar 

  • Heuschkel S, Wohlrab J, Neubert RH (2009) Dermal and transdermal targeting of dihydroavenanthramide D using enhancer molecules and novel microemulsions. Eur J Pharm Biopharm 72:552–560

    CAS  Article  Google Scholar 

  • Horwitz SB (1994) How to make taxol from scratch. Nature 367:593–594

    CAS  Article  Google Scholar 

  • Isaji M, Miyata H, Ajisawa Y (1998) Tranilast: a new application in the cardiovascular field as an antiproliferative drug. Cardiovasc Drug Rev 16:288–299

    CAS  Article  Google Scholar 

  • Ji LL, Lay D, Chung E, Fu Y, Peterson DM (2003) Effects of avenanthramides on oxidant generation and antioxidant enzyme activity in exercised rats. Nutr Res 23:1579–1590

    CAS  Article  Google Scholar 

  • Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076

    CAS  Article  Google Scholar 

  • Knobloch KH, Hahlbrock K (1975) Isoenzymes of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur J Biochem 52:311–320

    CAS  Article  Google Scholar 

  • Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, Ikeda S, Nakazawa M (1988) Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol 46:43–51

    CAS  Article  Google Scholar 

  • Konneh M (1998) Tranilast, kissei pharmaceuticals. IDrugs 1:141–146

    CAS  Google Scholar 

  • Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    CAS  Article  Google Scholar 

  • Lalonde S, Sero A, Pratelli R, Pilot G, Chen J, Sardi MI, Parsa SA, Kim D-Y, Acharya BR, Stein EV, Hu H-C, Villiers F, Takeda K, Yang Y, Han YS, Schwacke R, Chiang W, Kato N, Loqué D, Assmann SM, Kwak JM, Schroeder JI, Rhee SY, Frommer WB (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2. Front Physio 1:24. doi:10.3389/fphys.2010.00024

  • Lee-Manion AM, Price RK, Strain JJ, Dimberg LH, Sunnerheim K, Welch RW (2009) In vitro antioxidant activity and antigenotoxic affects of avenanthramides and related compounds. J Agric Food Chem 57:10619–10624

    CAS  Article  Google Scholar 

  • Limem I, Guedon E, Hehn A, Bourgaud F, Ghedira L, Engasser J-M, Ghoul M (2008) Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem 43:463–479

    CAS  Article  Google Scholar 

  • Lindermayr C, Fliegmann J, Ebel J (2003) Deletion of a single amino acid residue from different 4-coumarate:CoA ligases from soybean results in the generation of new substrate specificities. J Biol Chem 278:2781–2786

    CAS  Article  Google Scholar 

  • Liu L, Zubik L, Collins FW, Marko M, Meydani M (2004) The antiatherogenic potential of oat phenolic compounds. Artherosclerosis 175:39–49

    CAS  Article  Google Scholar 

  • Loqué D, Lalonde S, Looger LL, von Wirén N, Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446:195–198

    Article  Google Scholar 

  • Lv N, Song MY, Lee YR, Choi HN, Kwon KB, Park JW, Park BH (2009) Dihydroavenanthramide D protects pancreatic beta-cells from cytokine and streptozotocin toxicity. Biochem Biophys Res Commun 387:97–102

    CAS  Article  Google Scholar 

  • Moglia A, Comino C, Lanteri S, de Vos R, de Waard P, van Beek TA, Goitre L, Retta SF, Beekwilder J (2010) Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast. Metab Eng 12:223–232

    CAS  Article  Google Scholar 

  • Mukai N, Masaki K, Fujii T, Kawamukai M, Lefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109:564–569

    CAS  Article  Google Scholar 

  • Nair RB, Xia Q, Kartha CJ, Kurylo E, Hirji RN, Datla R, Selvaraj G (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant Physiol 130:210–220

    CAS  Article  Google Scholar 

  • Nelson JT, Lee J, Sims JW, Schmidt EW (2007) Characterization of SafC, a catechol 4-O-methyltransferase involved in saframycin biosynthesis. Appl Environ Microbiol 73:3575–3580

    CAS  Article  Google Scholar 

  • Nie L, Wise ML, Peterson DM, Meydani M (2006) Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis 186:260–266

    CAS  Article  Google Scholar 

  • Ogawa Y, Dogru M, Uchino M, Tatematsu Y, Kamoi M, Yamamoto Y, Ogawa J, Ishida R, Kaido M, Hara S, Matsumoto Y, Kawakita T, Okamoto S, Tsubota K (2010) Topical tranilast for treatment of the early stage of mild dry eye associated with chronic GVHD. Bone Marrow Transplant 45:565–569

    CAS  Article  Google Scholar 

  • Okazaki Y, Isobe T, Iwata Y, Matsukawa T, Matsuda F, Miyagawa H, Ishihara A, Nishioka T, Iwamura H (2004) Metabolism of avenanthramide phytoalexins in oat. Plant J 39:560–572

    CAS  Article  Google Scholar 

  • Okuda M, Ishikawa T, Saito Y, Shimizu T, Baba S (1984) A clinical evaluation of N-5′ with perennial-type allergic rhinitis—a test by the multi-clinic, intergroup, double-blind comparative method. Ann Allergy 53:178–185

    CAS  Google Scholar 

  • Oshitani N, Yamagami H, Watanabe K, Higuchi K, Arakawa T (2007) Long-term prospective pilot study with tranilast for the prevention of stricture progression in patients with Crohn’s disease. Gut 56:599–600

    Article  Google Scholar 

  • Pae HO, Jeong SO, Koo BS, Ha HY, Lee KM, Chung HT (2002) Tranilast, an orally active anti-allergic drug, up-regulates the anti-inflammatory heme oxygenase-1 expression but down-regulates the pro-inflammatory cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW264.7 macrophages. Biochem Biophys Res Commun 371:361–365

    Article  Google Scholar 

  • Park M, Kang K, Park S, Kim YS, Ha S-H, Lee SW, Ahn M-J, Bae J-M, Back K (2008) Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Appl Microbiol Biotechnol 81:43–49

    CAS  Article  Google Scholar 

  • Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    CAS  Article  Google Scholar 

  • Ponchet M, Favre-Bonvin J, Hauteville M, Ricci P (1988) Dianthramides (N-benzoyl and N-paracoumarylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry 27:725–730

    CAS  Article  Google Scholar 

  • Prud’homme GJ (2007) Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 87:1077–1091

    Article  Google Scholar 

  • Reinhard K, Matern U (1989) The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity. Arch Biochem Biophys 275:295–301

    CAS  Article  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CAS  Article  Google Scholar 

  • Schmaus G, Joppe H, Herrmann M, Sabater-Luntzel C, Vossing T (2006) Anthranilic acid amides and derivatives thereof as cosmetic and pharmaceutical agents. U.S. Patent 20060089413

  • Shiota N, Kovanen PT, Eklund KK, Shibata N, Shimoura K, Niibayashi T, Shimbori C, Okunishi H (2010) The anti-allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen-induced arthritis in mice. Br J Pharmacol 159:626–635

    CAS  Article  Google Scholar 

  • Sun X, Suzuki K, Nagata M, Kawauchi Y, Yano M, Ohkoshi S, Matsuda Y, Kawachi H, Watanabe K, Asakura H, Aoyagi Y (2010) Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1. Pathol Int 60:93–101

    CAS  Article  Google Scholar 

  • Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 25:1–6

    Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    CAS  Article  Google Scholar 

  • Tamai H, Katoh K, Yamaguchi T, Hayakawa H, Kanmatsuse K, Haze K, Aizawa T, Nakanishi S, Suzuki S, Suzuki T, Takase S, Nishikawa H, Katoh O (2002) The impact of tranilast on restenosis after coronary angioplasty: the Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2). Am Heart J 143:506–513

    Article  Google Scholar 

  • Tan SM, Zhang Y, Cox AJ, Kelly DJ, Qi W (2010) Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy. Nephrol Dial Transplant. doi:10.1093/ndt/gfq355

    Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366

    CAS  Article  Google Scholar 

  • Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151

    CAS  Article  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    CAS  Article  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functionnal characterization of the S. cerevisiae genome by deletion and parallel analysis. Science 285:901–906

    CAS  Article  Google Scholar 

  • Yang Q, Reinhard K, Schiltz E, Matern U (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol 35:777–789

    CAS  Article  Google Scholar 

  • Yang Q, Trinh HX, Imai S, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S (2004) Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant-Microb Interact 17:81–89

    CAS  Article  Google Scholar 

  • Zammit SC, Cox AJ, Gow RM, Zhang Y, Gilbert RE, Krum H, Kelly DJ, Williams SJ (2009) Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates. Bioorg Med Chem Lett 19:7003–7006

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org/) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Loqué.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1426 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eudes, A., Baidoo, E.E.K., Yang, F. et al. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 89, 989–1000 (2011). https://doi.org/10.1007/s00253-010-2939-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2939-y

Keywords

  • Cinnamoyl anthranilate
  • Tranilast
  • Avenanthramides
  • Recombinant yeast
  • HCBT