Advertisement

Applied Microbiology and Biotechnology

, Volume 89, Issue 2, pp 249–257 | Cite as

YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

  • Laura R. Jarboe
Mini-Review

Abstract

The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor.

Keywords

Aldo–keto Promiscuous Glutathione Tolerance Reverse engineering 

Notes

Acknowledgements

This work was funded by the Iowa State University Office of Biotechnology and the NSF Center for Biorenewable Chemicals Engineering Research Center, EEC-0813570. Chemical structures were obtained from ChemID Plus.

References

  1. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85(3):651–7CrossRefGoogle Scholar
  2. Babtie A, Tokuriki N, Hollfelder F (2010) What makes an enzyme promiscuous? Curr Opin Chem Biol 14(2):200–7CrossRefGoogle Scholar
  3. Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the Clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87(2):635–46CrossRefGoogle Scholar
  4. Claus P (1998) Selective hydrogenation of alpha, beta-unsaturated aldehydes and other C═O and C═C bonds containing compounds. Top Catal 5(1–4):51–62CrossRefGoogle Scholar
  5. Clomburg J, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol. Biotechnol Bioeng 103(1):148–161Google Scholar
  6. Cornally D, Mee B, MacDonaill C, Tipton KF, Kelleher D, Windle HJ, Henehan GTM (2008) Aldo-keto reductase from Helicobacter pylori—role in adaptation to growth at acid pH. FEBS J 275(12):3041–50CrossRefGoogle Scholar
  7. Donaldson GK, Eliot AC, Flint D, Maggio-Hall LA, Nagarajan V (2007) Fermentative production of four carbon alcohols. WO 2007/050671 A2Google Scholar
  8. Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G (2003) Process for the biological production of 1,3-propanediol with high titer. US 6514733 B1Google Scholar
  9. Gallezot P, Richard D (1998) Selective hydrogenation of alpha, beta-unsaturated aldehydes. Catal Rev Sci Eng 40(1–2):81–126CrossRefGoogle Scholar
  10. Helbig K, Grosse C, Nies DH (2008) Cadmium toxicity in glutathione mutants of Escherichia coli. J Bacteriol 190(15):5439–54CrossRefGoogle Scholar
  11. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–16CrossRefGoogle Scholar
  12. Jarboe LR, Hyduke DR, Tran LM, Chou KJY, Liao JC (2008) Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis. J Biol Chem 283(8):5148–57CrossRefGoogle Scholar
  13. Jarboe LR, Zhang XL, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol. doi: 10.1155/2010/761042 Google Scholar
  14. Johnson EA, Lin ECC (1987) Klebsiella pneumoniae 1, 3-propanediol-nad + oxidoreductase. J Bacteriol 169(5):2050–4Google Scholar
  15. Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK (2007) Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73(13):4100–9CrossRefGoogle Scholar
  16. Lee C, Kim I, Lee J, Lee KL, Min B, Park C (2010) Transcriptional activation of the aldehyde reductase yqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12. J Bacteriol 192(16):4205–14CrossRefGoogle Scholar
  17. Lei J, Zhou YF, Li LF, Su XD (2009) Structural and biochemical analyses of yvgN and ytbE from Bacillus subtilis. Protein Sci 18(8):1792–800CrossRefGoogle Scholar
  18. Li HM, Chen J, Li YH (2008) Enhanced activity of YqhD oxidoreductase in synthesis of 1, 3-propanediol by error-prone PCR. Prog Nat Sci 18(12):1519–24CrossRefGoogle Scholar
  19. Liu Y, Tuysuz H, Jia CJ, Schwickardi M, Rinaldi R, Lu AH, Schmidt W, Schuth F (2010) From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46(8):1238–40CrossRefGoogle Scholar
  20. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–8Google Scholar
  21. Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO (2009a) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75(19):6132–41CrossRefGoogle Scholar
  22. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009b) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–23CrossRefGoogle Scholar
  23. Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32(5):661–7CrossRefGoogle Scholar
  24. Mukhopadhyay P, Zheng M, Bedzyk LA, LaRossa RA, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101(3):745–50CrossRefGoogle Scholar
  25. Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme a-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170(7):2971–6Google Scholar
  26. Perez JM, Arenas FA, Pradenas GA, Sandoval JM, Vasquez CC (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283(12):7346–53CrossRefGoogle Scholar
  27. Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X (2008) Engineered Saccharomyces cerevisiae that produces 1, 3-propanediol from D-glucose. J Appl Microbiol 105(6):1768–76CrossRefGoogle Scholar
  28. Riehle MM, Bennett AF, Lenski RE, Long AD (2003) Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol Genomics 14(1):47–58Google Scholar
  29. Riehle MM, Bennett AF, Long AD (2005) Changes in gene expression following high-temperature adaptation in experimentally evolved populations of E. coli. Physiol Biochem Zool 78(3):299–315CrossRefGoogle Scholar
  30. Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomics study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76(6):1935–45CrossRefGoogle Scholar
  31. Schutz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5(2):169–78Google Scholar
  32. Schwarzenbacher R, von Delft F, Canaves JM, Brinen LS, Dai XP, Deacon AM, Elsliger MA, Eshaghi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Guda C, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, McMullan D, McPhillips TM, Miller MA, Miller MD, Morse A, Moy K, Ouyang J, Page R, Robb A, Rodrigues K, Selby TL, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang XH, West B, Wolf G, Hodgson KO, Wooley J, Wilson IA (2004) Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (tm0920) from Thermotoga maritima at 1.3 angstrom resolution. Proteins Struct Funct Genet 54(1):174–7CrossRefGoogle Scholar
  33. Seo JW, Seo MY, Oh BR, Heo SY, Baek JO, Rairakhwada D, Luo LH, Hong WK, Kim CH (2010) Identification and utilization of a 1, 3-propanediol oxidoreductase isoenzyme for production of 1, 3-propanediol from glycerol in Klebsiella pneumoniae. Appl Microbiol Biotechnol 85(3):659–66CrossRefGoogle Scholar
  34. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10(6):312–20CrossRefGoogle Scholar
  35. Soucaille P, Meynial-Salles I, Voelker F, Figge R (2008) Microorganisms and methods for production of 1,2-propanediol and acetol. WO 2008/116853 A1Google Scholar
  36. Sulzenbacher G, Alvarez K, van den Heuvel RHH, Versluis C, Spinelli M, Campanacci V, Valencia C, Cambillau C, Eklund H, Tegoni M (2004) Crystal structure of E. coli alcohol dehydrogenase YqhD: Evidence of a covalently modified NADP coenzyme. J Mol Biol 342(2):489–502CrossRefGoogle Scholar
  37. Tang XM, Tan YS, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1, 3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75(6):1628–34CrossRefGoogle Scholar
  38. Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam KT, Ingram LO (2010) YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J Ind Microbiol Biotech. doi: 10.1007/s10295-010-0787-5 Google Scholar
  39. University of Oklahoma Gene Expression Database (2009) http://genexpdb.ou.edu/, accessed July 24th 2010
  40. Villiers BRM, Hollfelder F (2009) Mapping the limits of substrate specificity of the adenylation domain of TycA. Chembiochem 10(4):671–82CrossRefGoogle Scholar
  41. Wang FH, Qu HJ, Zhang DW, Tian PF, Tan TW (2007) Production of 1, 3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system. Mol Biotechnol 37:112–9CrossRefGoogle Scholar
  42. Zhu JG, Li S, Ji XJ, Huang H, Hu N (2009) Enhanced 1, 3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1, 3-propanediol oxidoreductase isoenzyme. World J Microbiol Biotechnol 25(7):1217–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA

Personalised recommendations