Skip to main content
Log in

Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As a potential therapeutic agent, antimicrobial peptide has received increased attention in recent years. However, high-level expression of a small peptide with antimicrobial activity is still a challenging task. In this study, the coding sequence of antimicrobial peptide hPAB-β, a variant derived from human beta-defensin 2, was cloned into pPIC9K vector and transformed into Pichia pastoris. P. pastoris transformants harbored with multi-copy plasmids were screened by G418 selection. When the transformed cells were induced by methanol, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, and matrix-assisted laser desorption ionization-time of flight mass spectrometry revealed recombinant hPAB-β products consisting of three protein species of 4,680.4, 4,485.3, and 4,881.9 Da at proportions of 58%, 36%, and 6%, respectively, which may be due to the incomplete processing of the fusion signal peptide of α-factor by the STE13 protease. Expressed hPAB-β was secreted into the culture medium at a level of 241.2 ± 29.5 mg/L. Purified hPAB-β with 95% homogeneity was obtained by 10 kDa membrane filtration followed by cation ion-exchange chromatography with a SP-Sepharose™ XL column. The two major protein species separated through a SOURCE™ 30RPC reverse phase chromatography column showed definite antimicrobial activities against Staphylococcus aureus. All 22 methicillin-resistant S. aureus (MRSA) isolates with multidrug resistance phenotype were sensitive to the recombinant hPAB-β with minimal inhibitory concentrations of 8–64 μg/ml. Our results show that the methylotrophic yeast-inducible system is suitable for high-level expression of active hPAB-β, and that expressed hPAB-β in P. pastoris may be a potential antimicrobial agent against MRSA infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banerjee R, Gretes M, Basuino L, Strynadka N, Chambers HF (2008) In vitro selection and characterization of ceftobiprole-resistant methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 52:2089–2096

    Article  CAS  Google Scholar 

  • Berger-Bächi B, Rohrer S (2002) Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178:165–171

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cabral KM, Almeida MS, Valente AP, Almeida FC, Kurtenbach E (2003) Production of the active antifungal Pisum sativum defensin 1(Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122

    Article  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  • Cirioni O, Giacometti A, Kamysz W, Silvestri C, Riva A, Della Vittoria A, Abbruzzetti A, Lukasiak J, Scalise G (2007) In vitro activities of tachyplesin III against Pseudomonas aeruginosa. Peptides 28:747–751

    Article  CAS  Google Scholar 

  • Dathe M, Schumann M, Wieprecht T, Winkler A, Matsuzaki K, Murase O, Beyermann M, Krause E, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12622

    Article  CAS  Google Scholar 

  • Frecer V, Ho B, Ding JL (2004) De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother 48:3349–3357

    Article  CAS  Google Scholar 

  • Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE (1999) Salt-resistant alpha-helical cationic anti-microbial peptides. Antimicrob Agents Chemother 43:1542–1548

    CAS  Google Scholar 

  • Hancock RE (2003) Concerns regarding resistance to self-proteins. Microbiology 149:3343–3344

    Article  CAS  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  CAS  Google Scholar 

  • Haught C, Davis GD, Subramanian R, Jackson KW, Harrison RG (1998) Recombinant production and purification of novel anti-sense antimicrobial peptide in Escherichia coli. Biotechnol Bioeng 57:55–61

    Article  CAS  Google Scholar 

  • Huang L, Wang JF, Zhong ZX, Peng L, Chen HQ, Xu ZN, Cen PL (2006) Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnol Lett 28:627–632

    Article  CAS  Google Scholar 

  • Huang L, Leong SS, Jiang R (2009) Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl Microbiol Biotechnol 84:301–308

    Article  CAS  Google Scholar 

  • Jin F, Xu X, Zhang W, Gu D (2006) Expression and characterization of a housefly cecropin gene in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 49:39–46

    Article  CAS  Google Scholar 

  • Kim SJ, Quan R, Lee SJ, Lee HK, Choi JK (2009) Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J Microbiol 47:358–362

    Article  CAS  Google Scholar 

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  CAS  Google Scholar 

  • Ladokhin AS, White SH (2001) “Detergent-like” permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514:253–260

    Article  CAS  Google Scholar 

  • Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72:1762–1766

    Article  CAS  Google Scholar 

  • Lee JH, Minn I, Park CB, Kim SC (1998) Acidic peptide-mediated expression of the antimicrobial peptide buforin II as tandem repeats in Escherichia coli. Protein Expr Purif 12:53–60

    Article  CAS  Google Scholar 

  • Lee JH, Kim JH, Hwang SW, Lee WJ, Yoon HK, Lee HS, Hong SS (2000) High- level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun 277:575–580

    Article  CAS  Google Scholar 

  • Li L, Wang JX, Zhao XF, Kang CJ, Liu N, Xiang JH, Li FH, Sueda S, Kondo H (2005) High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif 39:144–151

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  • Maloy WL, Kari UP (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37:105–122

    Article  CAS  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    CAS  Google Scholar 

  • Monica C, Damaso T, Almeida MS, Kurtenbach E, Martins OB, Pereira N, Andrade JMMC, Albano RM (2003) Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Enviro Microbiol 69:6064–6072

    Article  Google Scholar 

  • Peng L, Xu ZN, Fang XM, Wang F, Yang S, Cen PL (2004) Preferential codons enhancing the expression level of human beta-defensin-2 in recombinant Escherichia coli. Protein Pept Lett 11:339–344

    Article  CAS  Google Scholar 

  • Pereira VC, Martins A, Rugolo LMSS, Cunha MLRS (2009) Detection of oxacillin resistance in Staphylococcus aureus isolated from the neonatal and pediatric units of a Brazilian teaching hospital. Clin Med Pediatr 3:23–31

    Google Scholar 

  • Pierce JC, Maloy WL, Salvador L, Dungan CF (1997) Recombinant expression of the antimicrobial peptide polyphemusin and its activity against the protozoan oyster pathogen Perkinsus marinus. Mol Mar Biol Biotechnol 6:248–259

    CAS  Google Scholar 

  • Piers KL, Brown MH, Hancock RE (1993) Recombinant-DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene 134:7–13

    Article  CAS  Google Scholar 

  • Plantz BA, Sinha J, Villarete L, Nickerson KW, Schlegel VL (2006) Pichia pastoris fermentation optimization: energy state and testing a growth-associated model. Appl Microbiol Biotechnol 72:297–305

    Article  CAS  Google Scholar 

  • Rao XC, Li S, Hu JC, Jin XL, Hu XM, Huang JJ, Chen ZJ, Zhu JM, Hu FQ (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr Purif 36:11–18

    Article  CAS  Google Scholar 

  • Rao X, Hu J, Li S, Jin X, Zhang C, Cong Y, Hu X, Tan Y, Huang J, Chen Z, Zhu J, Hu F (2005) Design and expression of peptide antibiotic hPAB-β as tandem multimers in E. coli. Peptides 26:721–729

    Article  CAS  Google Scholar 

  • Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L (2006) Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophysical J 91:206–216

    Article  CAS  Google Scholar 

  • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11:1469–1477

    CAS  Google Scholar 

  • Sader HS, Watters AA, Fritsche TR, Jones RN (2007) Daptomycin antimicrobial activity tested against methicillin-resistant staphylococci and vancomycin-resistant enterococci isolated in European medical centers. BMC Infect Dis 7:29

    Article  Google Scholar 

  • Schaegger H, Jagow GV (1987) Tricine-sodium dodecyl sulfate-poly-acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  CAS  Google Scholar 

  • Schwab U, Gilligan P, Jaynes J, Henke D (1999) In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens. Antimicrob Agents Chemother 43:1435–1440

    CAS  Google Scholar 

  • Stapleton PD, Taylor PW (2002) Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 85:57–72

    Article  CAS  Google Scholar 

  • Ueno S, Kusaka K, Tamada Y, Minaba M, Zhang H, Wang PC, Kato Y (2008) Anionic C-terminal proregion of nematode antimicrobial peptide cecropin P4 precursor inhibits antimicrobial activity of the mature peptide. Biosci Biotechnol Biochem 72:3281–3284

    Article  CAS  Google Scholar 

  • Vidaillac C, Rybak MJ (2009) Ceftobiprole: first cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Pharmacotherapy 29:511–25

    Article  CAS  Google Scholar 

  • Wang A, Wang S, Shen M, Chen F, Zou Z, Ran X, Cheng T, Su Y, Wang J (2009) High level expression and purification of bioactive human alpha-defensin 5 mature peptide in Pichia pastoris. Appl Microbiol Biotechnol 84:877–84

    Article  CAS  Google Scholar 

  • Xu Z, Peng L, Zhong Z, Fang X, Cen P (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog 22:382–386

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

  • Zhang H, Yuan QP (2007) Cloning and secretion expression of hepcidin in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 23:381–5

    CAS  Google Scholar 

  • Zhong Z, Xu Z, Peng L, Huang L, Fang X, Cen P (2006) Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli. Appl Microbiol Biotechnol 71:661–667

    Article  CAS  Google Scholar 

  • Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm KS, Shin SY (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem Biophys Res Commun 349:769–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30772061), Natural Science Foundation of Chongqing City (CSTC, 2005AB5201), and The “Eleven-Five” program of PLA (06G075). We thank Dr. Ling He at the Johns Hopkins University School of Medicine (USA) for the critical reading and modification of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancai Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, D., Cong, Y. et al. Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus . Appl Microbiol Biotechnol 89, 281–291 (2011). https://doi.org/10.1007/s00253-010-2864-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2864-0

Keywords

Navigation