Skip to main content
Log in

Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript


1,3-Propanediol is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensive synthesis. The aim of this study was to engineer an Escherichia coli strain that can produce 1,3-propanediol directly from glucose. We successfully constructed a stress-induced metabolic pathway from glucose to 1,3-propanediol in recombinant E. coli by the expression of gpd1 and gpp2 genes from Saccharomyces cerevisiae and dha operon from Klebsiella pneumoniae, respectively. Batch cultivation of the recombinant E. coli showed that 12.1 g/L 1,3-propanediol was accumulated in the culture without using any inducer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  • Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    Article  CAS  Google Scholar 

  • Daniel R, Boenigk R, Gottschalk G (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156

    CAS  Google Scholar 

  • Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G (2003) US patent 6,514,733

  • Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643

    CAS  Google Scholar 

  • Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101

    Article  CAS  Google Scholar 

  • Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395 (table of contents)

    Article  CAS  Google Scholar 

  • Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535

    CAS  Google Scholar 

  • Kang Z, Wang Q, Zhang H, Qi Q (2008) Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79:203–208

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320

    Article  CAS  Google Scholar 

  • Lin R, Liu H, Hao J, Cheng K, Liu D (2005) Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 27:1755–1759

    Article  CAS  Google Scholar 

  • Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B, Zhuge J (2010) Expression of dha operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr Microbiol 60:191–198

    Article  CAS  Google Scholar 

  • Meynial Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 9:152–159

    Article  CAS  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  Google Scholar 

  • Nakamura CE, Gatenby AA, Hsu AK, Reau RD, Haynie SL (2000) US patent 6,013,494

  • Sauer M, Marx H, Mattanovich D (2008) Microbial production of 1,3-propanediol. Recent Pat Biotechnol 2:191–197

    Article  CAS  Google Scholar 

  • Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913

    Article  CAS  Google Scholar 

  • Slininger PJ, Bothast RJ (1985) Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde. Appl Environ Microbiol 50:1444–1450

    CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    Article  CAS  Google Scholar 

  • Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH (2008) Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 100:923–932

    Article  CAS  Google Scholar 

Download references


This work was financially supported by a grant from the National Natural Science Foundation of China (30870022) and a grant of the National Basic Research Program of China (2011CB707405).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Qingsheng Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S. Figure 1

SDS-PAGE analysis of GPD1, GPP2, and fusion protein. Electrophoresis in 12% polyacrylamide gel. 1 E. coli DH5α/pSKGF which contains the fusion protein. 2 E. coli DH5α/pSKG which contains the respective GPD1 and GPP2. 3 E. coli DH5α. M protein marker (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Q., Zhang, H., Li, S. et al. Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli . Appl Microbiol Biotechnol 89, 57–62 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: