Abstract
The potential production of rhamnolipids was demonstrated using the thermophilic eubacterium Thermus thermophilus HB8 and sunflower seed oil or oleic acid as carbon sources. Sunflower seed oil was directly hydrolyzed by secretion of lipase and became a favorable carbon source for rhamnolipids production. Rhamnolipids levels were attainted high values, comparable to those produced by Pseudomonas strains from similar sources. Rhamnolipids synthesis in oleic acid exhibited a long period of induction, while in sunflower seed oil, the synthesis is more rapid. Glucose resulted in a more protracted period of rhamnolipids production after exhaustion of each or both carbon sources. Both mono- and di-rhamnolipids were identified by thin-layer chromatography (TLC) in the total rhamnolipids extract. The molecular composition of the produced biosurfactant was evaluated by Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and LC-MS analysis. Furthermore, secretion of rhamnolipids was confirmed on agar plates. The antimicrobial activity of rhamnolipids was detected against the bacterium Micrococcus lysodeikticus using a lysoplate assay. These results demonstrate that rhamnolipids produced in these substrates can be useful in both environmental and food industry applications by using cheap oil wastes. The alternative use of this thermophilic microorganism opens a new perspective concerning the valorization of wastes containing plant oils or frying oils to reduce the cost of rhamnolipids production.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Banat IM (1995) Characterization of biosurfactants and their use in pollution removal—state of the art (review). Acta Biotechnol 15:251–267
Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529
Costa SG, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072
De Koster CG, Vos B, Versluis C, Heerma W, Haverkamp J (1994) High-performance thin-layer chromatography/fast atom bombardement (tandem) mass spectrometry of Pseudomonas rhamnolipids. Biol Mass Spectrom 23:179–185
de Lima CJ, Ribeiro EJ, Sérvulo EF, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol 152(1):156–168
Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150
Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252
Déziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152
Fuciños P, Abadín CM, Sanromán A, Longo MA, Pastrana L, Rúa ML (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241
Gunther NW 4th, Nuñez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293
Gόnzler H and Gremlich H-U. 2003. IR spectroscopy. 1st edition. Wiley-VCH
Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47 T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387
Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322
Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of L-rhamnose. J Biol Chem 233:287–291
Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590
Hori K, Marsudi S, Unno H (2002) Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng 78:699–707
Ishigami Y, Gama Y, Uji Y, Masui K, Shibayama Y. (1988) Japanese Patent Kokai S63-77535 (Kokoku H5-63219)
Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24:855–859
Kleckner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Surfactant science series 48: biosurfactants: production, properties, applications. Marcel Dekker, New York, pp 373–389
Koch AK, Kappeli O, Ficher A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219
Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32
Leitermann F, Syldatk C, Hausmann R (2008) Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR spectroscopy. J Biol Eng 2:13
Lie Ø, Syed M, Solbu H (1986) Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand 27:23–32
Maier RM, Soberón-Chávez G (2005) Pseudomonas aeruginosa rhamnopilids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633
Majid MIA, Hori K, Akiyama M, Doi Y (1994) Production of poly (3-hydroxybutyrate) from plant oils by alcaligenes sp. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier, Japan, pp 417–424
Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663
Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961
Mata-Sandoval JC, Karns J, Torrents A (1999) HPLC method for the characterization of rhamnolipids mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220
Mercadé ME, Manresa A, Robert M, Espuny MJ, de Andrés C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6
Mercadé ME, Espuny MJ, Manresa A. (1997) The use of oil substrate for biosurfactant production. In: Pandalai SG (ed). Recent research developments in oil chemistry. Trivandrum, India: Tansw. Res. Net. p. 177–185
Nitschke M, Costa SG, Contiero J (2010) Structure and applications of a rhamnolipids surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160:2066–2074
Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269(31):19787–19795
Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428
Pantazaki AA, Karagiorgas AA, Liakopoulou-Kyriakides M, Kyriakidis DA (1998) Hyperalkaline and thermostable phosphatase in Thermus thermophilus. Appl Biochem Biotechnol 75:249–259
Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183
Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl Microbiol Biotechnol 83:659–668
Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterisation of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. Zeitscrift fu¨r Naturfosch 46c:204–209
Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767
Raiders RA, Knapp RM, McInerney MJ (1989) Microbial selective plugging and enhanced oil recovery. J Ind Microbiol 4:215–230
Rehm BH, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109
Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193
Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53:105–112
Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693:7–13
Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas aeruginosa species during growth on minimal agar. Biotechnol Tech 5:265–268
Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnopilids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725
Syldatk C, Lang S, Wagner F (1984) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Zeitscrift fu¨r Naturforsch 4c:51–60
Tahzibi Α, Kamal F, Assadi MM (2004) Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran Biomed J 8:25–31
Tanaka T, Nagao S, Ogawa H (2001) Attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy of functional groups on humic acid dissolving in aqueous solution. Anal Sci 17:1081–1084
Thavasi R, Balasubramanian JΖS, ΖT IΖ, Banat M (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925
Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84–86:917–930
Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571
Tuleva BK, Ivanov RG, Christova NE (2001) Biosurfactant production by an new Pseudomonas putida strain. Z Naturforsch 57:356–360
Wang F, Lee SY (1997) Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63:4765–4769
Wegerer A, Sun T, Altenbuchner J (2008) Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. BMC Biotechnol 8:2
Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103
Zhang GL, Wu YT, Qian XP, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ Sci B 6:725–730
Zhang H, Xiang H, Zhang G, Cao X, Meng Q (2009) Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. J Hazard Mater 167:217–223
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pantazaki, A.A., Dimopoulou, M.I., Simou, O.M. et al. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol 88, 939–951 (2010). https://doi.org/10.1007/s00253-010-2802-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-010-2802-1


