Skip to main content

Advertisement

Log in

Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The potential production of rhamnolipids was demonstrated using the thermophilic eubacterium Thermus thermophilus HB8 and sunflower seed oil or oleic acid as carbon sources. Sunflower seed oil was directly hydrolyzed by secretion of lipase and became a favorable carbon source for rhamnolipids production. Rhamnolipids levels were attainted high values, comparable to those produced by Pseudomonas strains from similar sources. Rhamnolipids synthesis in oleic acid exhibited a long period of induction, while in sunflower seed oil, the synthesis is more rapid. Glucose resulted in a more protracted period of rhamnolipids production after exhaustion of each or both carbon sources. Both mono- and di-rhamnolipids were identified by thin-layer chromatography (TLC) in the total rhamnolipids extract. The molecular composition of the produced biosurfactant was evaluated by Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and LC-MS analysis. Furthermore, secretion of rhamnolipids was confirmed on agar plates. The antimicrobial activity of rhamnolipids was detected against the bacterium Micrococcus lysodeikticus using a lysoplate assay. These results demonstrate that rhamnolipids produced in these substrates can be useful in both environmental and food industry applications by using cheap oil wastes. The alternative use of this thermophilic microorganism opens a new perspective concerning the valorization of wastes containing plant oils or frying oils to reduce the cost of rhamnolipids production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Banat IM (1995) Characterization of biosurfactants and their use in pollution removal—state of the art (review). Acta Biotechnol 15:251–267

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  Google Scholar 

  • Costa SG, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072

    Article  CAS  Google Scholar 

  • De Koster CG, Vos B, Versluis C, Heerma W, Haverkamp J (1994) High-performance thin-layer chromatography/fast atom bombardement (tandem) mass spectrometry of Pseudomonas rhamnolipids. Biol Mass Spectrom 23:179–185

    Article  Google Scholar 

  • de Lima CJ, Ribeiro EJ, Sérvulo EF, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol 152(1):156–168

    Article  CAS  Google Scholar 

  • Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150

    Article  CAS  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Google Scholar 

  • Déziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152

    Google Scholar 

  • Fuciños P, Abadín CM, Sanromán A, Longo MA, Pastrana L, Rúa ML (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241

    Article  CAS  Google Scholar 

  • Gunther NW 4th, Nuñez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    Article  CAS  Google Scholar 

  • Gόnzler H and Gremlich H-U. 2003. IR spectroscopy. 1st edition. Wiley-VCH

  • Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47 T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387

    Article  CAS  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    Article  CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of L-rhamnose. J Biol Chem 233:287–291

    CAS  Google Scholar 

  • Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590

    Article  CAS  Google Scholar 

  • Hori K, Marsudi S, Unno H (2002) Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng 78:699–707

    Article  CAS  Google Scholar 

  • Ishigami Y, Gama Y, Uji Y, Masui K, Shibayama Y. (1988) Japanese Patent Kokai S63-77535 (Kokoku H5-63219)

  • Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24:855–859

    CAS  Google Scholar 

  • Kleckner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Surfactant science series 48: biosurfactants: production, properties, applications. Marcel Dekker, New York, pp 373–389

    Google Scholar 

  • Koch AK, Kappeli O, Ficher A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  Google Scholar 

  • Leitermann F, Syldatk C, Hausmann R (2008) Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR spectroscopy. J Biol Eng 2:13

    Article  CAS  Google Scholar 

  • Lie Ø, Syed M, Solbu H (1986) Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand 27:23–32

    CAS  Google Scholar 

  • Maier RM, Soberón-Chávez G (2005) Pseudomonas aeruginosa rhamnopilids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  Google Scholar 

  • Majid MIA, Hori K, Akiyama M, Doi Y (1994) Production of poly (3-hydroxybutyrate) from plant oils by alcaligenes sp. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier, Japan, pp 417–424

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (1999) HPLC method for the characterization of rhamnolipids mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220

    Article  CAS  Google Scholar 

  • Mercadé ME, Manresa A, Robert M, Espuny MJ, de Andrés C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6

    Article  Google Scholar 

  • Mercadé ME, Espuny MJ, Manresa A. (1997) The use of oil substrate for biosurfactant production. In: Pandalai SG (ed). Recent research developments in oil chemistry. Trivandrum, India: Tansw. Res. Net. p. 177–185

  • Nitschke M, Costa SG, Contiero J (2010) Structure and applications of a rhamnolipids surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160:2066–2074

    Article  CAS  Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269(31):19787–19795

    CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428

    Article  CAS  Google Scholar 

  • Pantazaki AA, Karagiorgas AA, Liakopoulou-Kyriakides M, Kyriakidis DA (1998) Hyperalkaline and thermostable phosphatase in Thermus thermophilus. Appl Biochem Biotechnol 75:249–259

    Article  CAS  Google Scholar 

  • Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183

    Article  CAS  Google Scholar 

  • Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl Microbiol Biotechnol 83:659–668

    Article  CAS  Google Scholar 

  • Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterisation of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. Zeitscrift fu¨r Naturfosch 46c:204–209

    Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    CAS  Google Scholar 

  • Raiders RA, Knapp RM, McInerney MJ (1989) Microbial selective plugging and enhanced oil recovery. J Ind Microbiol 4:215–230

    Article  CAS  Google Scholar 

  • Rehm BH, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109

    Article  CAS  Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193

    CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53:105–112

    Article  CAS  Google Scholar 

  • Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693:7–13

    Article  CAS  Google Scholar 

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas aeruginosa species during growth on minimal agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnopilids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F (1984) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Zeitscrift fu¨r Naturforsch 4c:51–60

    Google Scholar 

  • Tahzibi Α, Kamal F, Assadi MM (2004) Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran Biomed J 8:25–31

    CAS  Google Scholar 

  • Tanaka T, Nagao S, Ogawa H (2001) Attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy of functional groups on humic acid dissolving in aqueous solution. Anal Sci 17:1081–1084

    Google Scholar 

  • Thavasi R, Balasubramanian JΖS, ΖT IΖ, Banat M (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925

    Article  CAS  Google Scholar 

  • Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84–86:917–930

    Article  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571

    Article  CAS  Google Scholar 

  • Tuleva BK, Ivanov RG, Christova NE (2001) Biosurfactant production by an new Pseudomonas putida strain. Z Naturforsch 57:356–360

    Google Scholar 

  • Wang F, Lee SY (1997) Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63:4765–4769

    CAS  Google Scholar 

  • Wegerer A, Sun T, Altenbuchner J (2008) Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. BMC Biotechnol 8:2

    Article  CAS  Google Scholar 

  • Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103

    Article  CAS  Google Scholar 

  • Zhang GL, Wu YT, Qian XP, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ Sci B 6:725–730

    Article  CAS  Google Scholar 

  • Zhang H, Xiang H, Zhang G, Cao X, Meng Q (2009) Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. J Hazard Mater 167:217–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia A. Pantazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantazaki, A.A., Dimopoulou, M.I., Simou, O.M. et al. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol 88, 939–951 (2010). https://doi.org/10.1007/s00253-010-2802-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2802-1

Keywords

Profiles

  1. Anastasia A. Pantazaki