Applied Microbiology and Biotechnology

, Volume 88, Issue 2, pp 409–424 | Cite as

Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids



Threonine aldolases (TAs) constitute a powerful tool for catalyzing carbon–carbon bond formations in synthetic organic chemistry, thus enabling an enantio- and diastereoselective synthesis of β-hydroxy-α-amino acids. Starting from the achiral precursors glycine and an aldehyde, two new stereogenic centres are formed in this catalytic step. The resulting chiral β-hydroxy-α-amino acid products are important precursors for pharmaceuticals such as thiamphenicol, a l-threo-phenylserine derivative or l-threo-3,4-dihydroxyphenylserine. TAs are pyridoxal-5-phosphate-dependent enzymes, which, in nature, catalyze the cleavage of l-threonine or l-allo-threonine to glycine and acetaldehyde in a glycine biosynthetic pathway. TAs from a broad number of species of bacteria and fungi have been isolated and characterised as biocatalysts for the synthesis of β-hydroxy-α-amino acids. In this review, screening methods to obtain novel TAs, their biological function, biochemical characterisation and preparative biotransformations with TAs are described.


Threonine aldolases Carbon–carbon bond formation Racemic resolution Asymmetric synthesis Phenylserine Review 


  1. Alonso M, Riera A (2005) Improved preparation of β-hydroxy-alpha-amino acids: direct formation of sulfates by sulfuryl chloride. Tetrahedron Asymmetr 16:3908–3912CrossRefGoogle Scholar
  2. Aoyama Y, Motokawa Y (1981) L-Threonine dehydrogenase of chicken liver. Purification, characterization, and physiological significance. J Biol Chem 256:12367–12373Google Scholar
  3. Baik SH, Yoshioka H (2009) Enhanced synthesis of l-threo-3,4-dihydroxyphenylserine by high-density whole-cell biocatalyst of recombinant l-threonine aldolase from Streptomyces avelmitilis. Biotechnol Lett 31:443–448CrossRefGoogle Scholar
  4. Baik SH, Yoshioka H, Yukawa H, Harayama S (2007) Synthesis of L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS) with thermostabilized low-specific L-threonine aldolase from Streptomyces coelicolor A3. J Microbiol Biotechnol 17:721–727Google Scholar
  5. Berkessel A, Gröger H (2005) Asymmetric organocatalysis. Wiley-VCH, Weinheim, p 159CrossRefGoogle Scholar
  6. Blank S, Seebach D (1993) Preparation of (R,R)-2-amino-3-hydroxycarboxylic or (S,S)-2-amino-3-hydroxycarboxylic acids (allo-threonine analogs) by acylation reduction of t-butyl 2-t-butyl-3-methyl-4-oxoimidazolidine-1-carboxylate (Boc-Bmi). Liebigs Annalen Der Chemie 8:889–896CrossRefGoogle Scholar
  7. Contestabile R, Paiardini A, Pascarella S, di Salvo ML, D'Aguanno S, Bossa F (2001) L-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase—a subgroup of strictly related enzymes specialized for different functions. Eur J Biochem 268:6508–6525CrossRefGoogle Scholar
  8. Coppi L, Giordano C, Longoni A, Panossian S (1997) Thiamphenicol: a manufacturing process involving a double inversion of stereochemistry. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in industry, vol 2, 2nd edn. Wiley, Chichester, pp 353–362Google Scholar
  9. Dale RA (1978) Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochim Biophys Acta 544:496–503Google Scholar
  10. Dietz FR, Gröger H (2009) Asymmetric synthesis of all stereoisomers of α-methylthreonine using an organocatalytic Steglich rearrangement reaction as a key step. Synthesis-Stuttg 24:4208–4218Google Scholar
  11. Edgar AJ (2002) Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases. BMC Biochem 3:19CrossRefGoogle Scholar
  12. Edgar AJ (2005) Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene. BMC Genomics 6:32. doi:10.1186/1471-2164-1186-1132 CrossRefGoogle Scholar
  13. Eisenstein E (1995) Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis. Arch Biochem Biophys 316:311–318CrossRefGoogle Scholar
  14. Fesko K, Giger L, Hilvert D (2008a) Synthesis of β-hydroxy-α-amino acids with a reengineered alanine racemase. Bioorg Med Chem Lett 18:5987–5990CrossRefGoogle Scholar
  15. Fesko K, Reisinger C, Steinreiber J, Weber H, Schurmann M, Griengl H (2008b) Four types of threonine aldolases: similarities and differences in kinetics/thermodynamics. J Mol Catal B Enzym 52–3:19–26CrossRefGoogle Scholar
  16. Fesko K, Uhl M, Steinreiber J, Gruber K, Griengl H (2010) Biocatalytic access to α, α-dialkyl-alpha-amino acids by a mechanism-based approach. Angew Chem Int Ed 49:121–124Google Scholar
  17. Fujii M, Miura T, Kajimoto T, Ida Y (2000) Facile synthesis of 3,4-dihydroxyprolines as an application of the L-threonine aldolase-catalyzed aldol reaction. Synlett 2000:1046–1048CrossRefGoogle Scholar
  18. Garbaccio RM, Wolkenberg SE (2006) Science of synthesis, vol 20b. Georg Thieme Verlag, Stuttgart, pp 1131–1202Google Scholar
  19. Gasparski CM, Miller MJ (1991) Synthesis of β-hydroxy-α-amino acids by aldol condensation using a chiral phase-transfer catalyst. Tetrahedron 47:5367–5378CrossRefGoogle Scholar
  20. Gijsen H, Qiao L, Fitz W, Wong C-H (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 96:443–474CrossRefGoogle Scholar
  21. Gutierrez LM, Garrabou X, Agosta E, Servi S, Parella T, Joglar J, Clapés P (2008) Serine hydroxymethyl transferase from Streptococcus thermophilus and 2'-L-threonine aldolase from Escherichia coli as stereocomplementary biocatalysts for the synthesis of β-hydroxy-α, ω-diamino acid derivatives. Chem Eur J 14:4647–4656CrossRefGoogle Scholar
  22. Gwon H-J, Baik S-H (2010) Diastereoselective synthesis of l-threo-3, 4-dihydroxyphenylserine by low-specific l-threonine aldolase mutants. Biotechnol Lett 32:143–149CrossRefGoogle Scholar
  23. Herbert RB, Wilkinson B (1994) Preparation of (2R,3S)-β-hydroxy-α-amino acids by use of a novel Streptomyces aldolase as a resolving agent for racemic material. Can J Chem 72:114–117Google Scholar
  24. Herbert RB, Wilkinson B, Ellames GJ, Kunec EK (1993) Stereospecific lysis of a range of β-hydroxy-α-amino acids catalyzed by a novel aldolase from Streptomyces amakusaensis. Chem Soc Chem Commun 1993:205–206CrossRefGoogle Scholar
  25. Horikawa M, Busch-Petersen J, Corey EJ (1999) Enantioselective synthesis of β-hydroxy-α-amino acid esters by aldol coupling using a chiral quaternary ammonium salt as catalyst. Tetrahedron Lett 40:3843–3846CrossRefGoogle Scholar
  26. Kataoka M, Ikemi M, Morikawa T, Miyoshi T, Nishi K, Wada M, Yamada H, Shimizu S (1997) Isolation and characterization of D-threonine aldolase, a pyridoxal-5'-phosphate-dependent enzyme from Arthrobacter sp. DK-38. Eur J Biochem 248:385–393CrossRefGoogle Scholar
  27. Kielkopf CL, Burley SK (2002) X-ray structures of threonine aldolase complexes: structural basis of substrate recognition. Biochemistry 41:11711–11720CrossRefGoogle Scholar
  28. Kimura T, Vassilev VP, Shen GJ, Wong CH (1997) Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant D- and L-threonine aldolases. J Am Chem Soc 119:11734–11742CrossRefGoogle Scholar
  29. Kumagai H, Yoshida H, Yamada H, Nagate T (1972) Threonine aldolase from Candida humicola 2. Purification, crystallization and properties. Biochim Biophys Acta 258:779–790Google Scholar
  30. Kuroda S, Nozaki H, Watanabe K, Yokozeki K, Imabayashi Y (2008) Producing L-serine derivative e.g. α-methyl-L-serine which is useful as pharmaceutical intermediate, involves reacting L-alpha-amino acid with aldehyde, in presence of specific enzyme derived from Ralstonia genus. In: Pat Appl EP 1882737A1. Ajinomoto Co Inc.Google Scholar
  31. Lee SJ, Kang HY, Lee Y (2003) High-throughput screening methods for selecting L-threonine aldolases with improved activity. J Mol Catal B Enzym 26:265–272CrossRefGoogle Scholar
  32. Liu JQ, Dairi T, Kataoka M, Shimizu S, Yamada H (1997) L-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5'-phosphate-binding lysine residue by site-directed mutagenesis. J Bacteriol 179:3555–3560Google Scholar
  33. Liu JQ, Ito S, Dairi T, Itoh N, Shimizu S, Yamada H (1998) Low-specificity L-threonine aldolase of Pseudomonas sp. NCIMB 10558: purification, characterization and its application to beta-hydroxy-alpha-amino acid synthesis. Appl Microbiol Biotechnol 49:702–708CrossRefGoogle Scholar
  34. Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998a) Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli. Eur J Biochem 255:220–226CrossRefGoogle Scholar
  35. Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998b) A novel metal-activated pyridoxal enzyme with a unique primary structure, low specificity D-threonine aldolase from Arthrobacter sp. strain DK-38—molecular cloning and cofactor characterization. J Biol Chem 273:16678–16685CrossRefGoogle Scholar
  36. Liu JQ, Ito S, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998c) Gene cloning, nucleotide sequencing, and purification and characterization of the low-specificity L-threonine aldolase from Pseudomonas sp. strain NCIMB 10558. Appl Environm Microbiol 64:549–554Google Scholar
  37. Liu JQ, Odani M, Dairi T, Itoh N, Shimizu S, Yamada H (1999) A new route to L-threo-3-[4-(methylthio)phenylserine], a key intermediate for the synthesis of antibiotics: recombinant low-specificity D-threonine aldolase-catalyzed stereospecific resolution. Appl Microbiol Biotechnol 51:586–591CrossRefGoogle Scholar
  38. Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (2000a) Diversity of microbial threonine aldolases and their application. J Mol Catal B Enzym 10:107–115CrossRefGoogle Scholar
  39. Liu JQ, Odani M, Yasuoka T, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (2000b) Gene cloning and overproduction of low-specificity D-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug. Appl Microbiol Biotechnol 54:44–51CrossRefGoogle Scholar
  40. Makart S, Bechtold M, Panke S (2007) Towards preparative asymmetric synthesis of β-hydroxy-α-amino acids: L-allo-threonine formation from glycine and acetaldehyde using recombinant GlyA. J Biotechnol 130:402–410CrossRefGoogle Scholar
  41. Misono H, Maeda H, Tuda K, Ueshima S, Miyazaki N, Nagata S (2005) Characterization of an inducible phenylserine aldolase from Pseudomonas putida 24-1. Appl Environm Microbiol 71:4602–4609CrossRefGoogle Scholar
  42. Miura T, Fujii M, Shingu K, Koshimizu I, Naganoma J, Kajimoto T, Ida Y (1998) Application of L-threonine aldolase-catalyzed reaction for the preparation of a peptidic mimetic of RNA: a leading compound of Vero-toxin inhibitors. Tetrahedron Lett 39:7313–7316CrossRefGoogle Scholar
  43. Moon SH, Ohfune Y (1994) Efficient syntheses of the 4 enantiomers and diastereomers of α-methylthreonine and both enantiomers of α-methylserine. J Am Chem Soc 116:7405–7406CrossRefGoogle Scholar
  44. Nishiyama T, Mohile SS, Kajimoto T, Node M (2007) Synthesis of thymine polyoxin C by using L-threonine aldolase-catalyzed aldol reaction. Heterocycles 71:1397–1405CrossRefGoogle Scholar
  45. Nishiyama T, Kajimoto T, Mohile SS, Hayama N, Otsuda T, Ozeki M, Node M (2009) The first enantioselective synthesis of imino-deoxydigitoxose and protected imino-digitoxose by using L-threonine aldolase-catalyzed aldol condensation. Tetrahedron Asymmetry 30:230–234CrossRefGoogle Scholar
  46. Nozaki H, Kuroda S, Watanabe K, Yokozeki K (2008) Gene cloning of α-methylserine aldolase from Variovorax paradoxus and purification and characterization of the recombinant enzyme. Biosci Biotechnol Biochem 72:2580–2588CrossRefGoogle Scholar
  47. Nozaki H, Kuroda S, Watanabe K, Yokozeki K (2009) Gene cloning, purification, and characterization of α-methylserine aldolase from Bosea sp AJ110407 and its applicability for the enzymatic synthesis of α-methyl-L-serine and α-ethyl-L-serine. J Mol Catal B Enzym 59:237–242CrossRefGoogle Scholar
  48. Ogawa H, Gomi T, Fujioka M (2000) Serine hydroxymethyltransferase and threonine aldolase: are they identical? Int J Biochem Cell Biol 32:289–301CrossRefGoogle Scholar
  49. Ooi T, Taniguchi M, Kameda M, Maruoka K (2002) Direct asymmetric aldol reactions of glycine Schiff base with aldehydes catalyzed by chiral quaternary ammonium salts. Angew Chem Int Ed 41:4542–4544CrossRefGoogle Scholar
  50. Riario-Sforza G, Pagani R, Marinello E (1969) Threonine aldolase and allothreonine aldolase in rat liver. Eur J Biochem 8:88–92CrossRefGoogle Scholar
  51. Sagui F, Conti P, Roda G, Contestabile R, Riva S (2008) Enzymatic synthesis of ω-carboxy-β-hydroxy-(L)-α-amino acids. Tetrahedron 64:5079–5084CrossRefGoogle Scholar
  52. Samach A, Hareven D, Gutfinger T, Ken-Dror S, Lifschitz E (1991) Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci USA 88:2678–2682CrossRefGoogle Scholar
  53. Schirch L (1982) Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol 53:83–112Google Scholar
  54. Schirch LV, Gross T (1968) Serine transhydroxymethylase. J Biol Chem 243:5651–5655Google Scholar
  55. Schöllkopf U, Hartwig W, Groth U (1980) Asymmetric syntheses via heterocyclic intermediates. 3. Enantioselective synthesis of α-methylserines. Angew Chem Int Ed Engl 19:212–213CrossRefGoogle Scholar
  56. Seebeck FP, Hilvert D (2003) Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc 125:10158–10159CrossRefGoogle Scholar
  57. Shao H, Rueter JK, Goodman M (1998) Novel enantioselective synthesis of α-methylthreonines and α, β-dimethylcysteines. J Org Chem 63:5240–5244CrossRefGoogle Scholar
  58. Steinreiber J, Fesko K, Mayer C, Reisinger C, Schürmann M, Griengl H (2007a) Synthesis of γ-halogenated and long-chain β-hydroxy-α-amino acids and 2-amino-1,3-diols using threonine aldolases. Tetrahedron 63:8088–8093CrossRefGoogle Scholar
  59. Steinreiber J, Fesko K, Reisinger C, Schürmann M, van Assema F, Wolberg M, Mink D, Griengl H (2007b) Threonine aldolases—an emerging tool for organic synthesis. Tetrahedron 63:918–926CrossRefGoogle Scholar
  60. Steinreiber J, Schürmann M, van Assema F, Wolberg M, Fesko K, Reisinger C, Mink D, Griengl H (2007c) Synthesis of aromatic 1, 2-amino alcohols utilizing a bienzymatic dynamic kinetic asymmetric transformation. Adv Synth Catal 349:1379–1386CrossRefGoogle Scholar
  61. Steinreiber J, Schürmann M, Wolberg M, van Assema F, Reisinger C, Tesko K, Mink D, Griengl H (2007d) Overcoming thermodynamic and kinetic limitations of aldolase-catalyzed reactions by applying multienzymatic dynamic kinetic asymmetric transformations. Angew Chem Int Ed 46:1624–1626CrossRefGoogle Scholar
  62. Stocklein W, Schmidt HL (1985) Evidence for L-threonine cleavage and allo-threonine formation by different enzymes from Clostridium pasteurianum—threonine aldolase and serine hydroxymethyltransferase. Biochem J 232:621–622Google Scholar
  63. Tanaka T, Ozawa M, Miura T, Inazu T, Tsuji S, Kajimoto T (2002) Synthesis of novel mimetics of CMP-sialic acid as the inhibitors of sialyltransferases. Synlett 9:1487–1490Google Scholar
  64. Tanaka T, Tsuda C, Miura T, Inazu T, Tsuji S, Nishihara S, Hisamatsu M, Kajimoto T (2004) Design and synthesis of peptide mimetics of GDP-fucose: targeting inhibitors of fucosyltransferases. Synlett 2:243–246Google Scholar
  65. Vassilev VP, Uchiyama T, Kajimoto T, Wong CH (1995) L-Threonine aldolase in organic synthesis—preparation of novel β-hydroxy-α-amino acids. Tetrahedron Lett 36:4081–4084CrossRefGoogle Scholar
  66. Vidal L, Calveras J, Clapes P, Ferrer P, Caminal G (2005) Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Appl Microbiol Biotechnol 68:489–497CrossRefGoogle Scholar
  67. Wada M, Sakamoto M, Kataoka M, Liu JQ, Yamada H, Shimizu S (1998) Distribution of threonine aldolase activity with different stereospecificities in aerobic bacteria. Biosci Biotechnol Biochem 62:1586–1588CrossRefGoogle Scholar
  68. Yamada H, Kumagai H, Nagate T, Yoshida H (1971) Formation of threonine aldolase by bacteria and yeasts. Agric Biol Chem 35:1340–1345Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.evocatal GmbHDüsseldorfGermany
  2. 2.Department of Chemistry and PharmacyUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Institute of Molecular Enzyme TechnologyHeinrich-Heine-University of Düsseldorf, Research Centre JülichJülichGermany

Personalised recommendations