Skip to main content

Advertisement

Log in

Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gene “7” of Escherichia coli phage K1E was proposed to encode a novel DNA-dependent RNA polymerase (RNAP). The corresponding protein was produced recombinantly, purified to apparent homogeneity via affinity chromatography, and successfully employed for in vitro RNA synthesis. Optimal assay conditions (pH 8, 37°C, 10 mM magnesium chloride and 1.3 mM spermidine) were established. The corresponding promoter regions were identified on the phage genome and summarized in a sequence logo. Surprisingly, next to K1E promoters, the SP6 promoter was also recognized efficiently in vitro by K1E RNAP, while the T7 RNAP promoter was not recognized at all. Based on these results, a system for high-yield in vitro RNA synthesis using K1E RNAP was established. The template plasmid is a pUC18 derivative, which enables blue/white screening for positive cloning of the target DNA. Production of more than 5 μg of purified RNA per microgram plasmid DNA was achieved. Finally, in vivo protein production systems for Bacillus megaterium were established based on K1E and SP6 phage RNAP transcription. Up to 61.4 mg g −1CDW (K1E RNAP) of the reporter protein Gfp was produced in shaking flask cultures of B. megaterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barg H, Malten M, Jahn M, Jahn D (2005) Protein and vitamin production in Bacillus megaterium. In: Barredo EL (ed) Microbial processes and products, 1st edn. Humana press, Totowa, NJ, pp 165–184

    Google Scholar 

  • Biedendieck R, Yang Y, Deckwer WD, Malten M, Jahn D (2007) Plasmid system for the intracellular production and purification of affinity-tagged proteins in Bacillus megaterium. Biotechnol Bioeng 96:525–537

    Article  CAS  Google Scholar 

  • Butler ET, Chamberlin MJ (1982) Bacteriophage SP6-specific RNA polymerase I. Isolation and characterization of the enzyme. J Biol Chem 257:5772–5778

    CAS  Google Scholar 

  • Carter MG, Sharov AA, VanBuren V, Dudekula DB, Carmack CE, Nelson C, Ko MS (2005) Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol 6:R61

    Article  Google Scholar 

  • Chakraborty PR, Salvo RA, Majumder HK, Maitra U (1977) Further characterization of bacteriophage T3-induced ribonucleic acid polymerase. Studies on the size of in vitro transcripts and interaction of T3 RNA polymerase with T3 DNA. J Biol Chem 252:6485–6493

    CAS  Google Scholar 

  • Chamberlin M, Ring J (1973) Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J Biol Chem 248:2235–2244

    CAS  Google Scholar 

  • Chen Z, Schneider TD (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res 33:6172–6187

    Article  CAS  Google Scholar 

  • Conrad B, Savchenko RS, Breves R, Hofemeister J (1996) A T7 promoter-specific, inducible protein expression system for Bacillus subtilis. Mol Gen Genet 250:230–236

    CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  Google Scholar 

  • Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572

    Article  CAS  Google Scholar 

  • Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  CAS  Google Scholar 

  • Gamer M, Frode D, Biedendieck R, Stammen S, Jahn D (2009) A T7 RNA polymerase-dependent gene expression system for Bacillus megaterium. Appl Microbiol Biotechnol 82:1195–1203

    Article  CAS  Google Scholar 

  • Golomb M, Chamberlin M (1974) Characterization of T7-specific ribonucleic acid polymeraseIV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249:2858–2863

    CAS  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  Google Scholar 

  • Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520

    Article  CAS  Google Scholar 

  • Jorgensen ED, Durbin RK, Risman SS, McAllister WT (1991) Specific contacts between the bacteriophage T3, T7, and SP6 RNA polymerases and their promoters. J Biol Chem 266:645–651

    CAS  Google Scholar 

  • Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    Article  CAS  Google Scholar 

  • Lobet Y, Peacock MG, Cieplak W Jr (1989) Frame-shift mutation in the lacZ gene of certain commercially available pUC18 plasmids. Nucleic Acids Res 17:4897

    Article  CAS  Google Scholar 

  • McAllister WT (1991) Plasmid for the overproduction of bacteriophage T3 RNA polymerase, transcription vectors that carry a promoter recognized by its polymerase, gene coding for T3 RNA polymerase and application of these plasmids. US Patent 5,037,745 University of Medicine and Dentistry of New Jersey, USA

  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056

    Article  CAS  Google Scholar 

  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  Google Scholar 

  • Münch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189

    Article  Google Scholar 

  • Paschal BM, McReynolds LA, Noren CJ, Nichols NM (2008) RNA polymerases. Curr Protoc Mol Biol Chapter 3:Unit3 8

    Google Scholar 

  • Patkar A, Vijayasankaran N, Urry DW, Srienc F (2002) Flow cytometry as a useful tool for process development: rapid evaluation of expression systems. J Biotechnol 93:217–229

    Article  CAS  Google Scholar 

  • Rygus T, Hillen W (1991) Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl Microbiol Biotechnol 35:594–599

    Article  CAS  Google Scholar 

  • Sagawa H, Ohshima A, Kato I (1996) A tightly regulated expression system in Escherichia coli with SP6 RNA polymerase. Gene 168:37–41

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  Google Scholar 

  • Scholl D, Kieleczawa J, Kemp P, Rush J, Richardson CC, Merril C, Adhya S, Molineux IJ (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J Mol Biol 335:1151–1171

    Article  CAS  Google Scholar 

  • Schweizer HP, Klassen TR, Hoang T (1996) Improved methods for gene analysis and expression in Pseudomonas. In: Nakazawa T, Haas D, Silver S (eds) Molecular biology of pseudomonads, 1st edn. ASM Press, Washington, DC, pp 229–237

    Google Scholar 

  • Stammen S, Müller BK, Korneli C, Biedendieck R, Gamer M, Franco-Lara E, Jahn D (2010) High yield intra- and extracellular protein production using Bacillus megaterium. Appl Environ Microbiol 76:4037–4046

    Google Scholar 

  • Studier FW, Davanloo P, Rosenberg AH, Moffatt BA, Dunn JJ (1999) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. US Patent 5,869,320 Brookhaven Science Associates LLC, Upton, NY, USA

  • Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Mühlenhoff M (2006) Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol Microbiol 60:1123–1135

    Article  CAS  Google Scholar 

  • Stump WT, Hall KB (1993) SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res 21:5480–5484

    Article  CAS  Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    Article  CAS  Google Scholar 

  • Vary PS (1994) Prime time for Bacillus megaterium. Microbiology 140(Pt 5):1001–1013

    Article  CAS  Google Scholar 

  • Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer WD, Jahn D (2007) Bacillus megaterium–from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967

    Article  CAS  Google Scholar 

  • Wittchen KD, Meinhardt F (1995) Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol 42:871–877

    Article  CAS  Google Scholar 

  • Yang Y, Malten M, Grote A, Jahn D, Deckwer WD (2007) Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium. Biotechnol Bioeng 96:780–794

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by “Deutsche Forschungsgemeinschaft (SFB578)”.

The genomic phage DNA of K1E and SP6 bacteriophage was kindly provided by Dr. Martina Mühlenhoff, Dr. Rita Gerardy-Schahn, Dr. Graham Hatfull, and Dr. Roger Hendrix, respectively. Thanks to Dr. Mark G. Carter for the plasmids of the pNIAysic series and to Dr. Richard Münch for the support during the computational part of this work. Furthermore, thanks to Katrin B. Müller and Jannika Viereck for the scientific assistance during this work. Thanks to Stefanie Klein for the preparation of T7 RNA polymerase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jahn.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stammen, S., Schuller, F., Dietrich, S. et al. Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium . Appl Microbiol Biotechnol 88, 529–539 (2010). https://doi.org/10.1007/s00253-010-2732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2732-y

Keywords

Navigation