Advertisement

Applied Microbiology and Biotechnology

, Volume 88, Issue 3, pp 671–678 | Cite as

Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85

  • Qiang Li
  • Jose A. Siles
  • Ian P. ThompsonEmail author
Biotechnological Products and Process Engineering

Abstract

Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains d-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove d-limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

Keywords

Succinic acid Orange peel Wheat straw Fibrobacter succinogenes Bio-refinery 

Notes

Acknowledgements

The authors are grateful to Paul Weimer for the provision of the strain and useful discussion. The authors are also grateful to EPSRC for sponsoring the project (grant number EP/F016727/1) and Ministry of Science and Innovation, Spanish Government, for funding José Ángel Siles López (Grant No. BES-2006-14074, Project No. CTM2005-01293. Co-financed by the European Social Fund).

References

  1. APHA (American Public Health Association) (1989) Standard Methods for the examination of water and wastewater, 17th edn. In: Clesceri LS, Greenberg AE, Trussell RR. APHA, Washington, DCGoogle Scholar
  2. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. doi: 10.1002/ceat.200800063 CrossRefGoogle Scholar
  3. Braddock RJ, Temelli F, Cadwallader KR (1986) Citrus essential oils—a dossier for material safety data sheets. Food Technol 40:114–116Google Scholar
  4. Chen K, Jiang M, Wei P, Yao J, Wu H (2010) Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl Biochem Biotechnol 160(2):477-485. doi: 10.1007/s12010-008-8367-0 Google Scholar
  5. Chesson A, Stewart CS, Dalgarno K, King K (1986) Degradation of isolated grass mesophyll, epidermis and fibre cell wall in the rumen and by cellulolytic rumen bacteria in axemic culture. J Appl Bacteriol 60:327–336. doi: 10.1128/AEM.71.3.1247-1253.2005 Google Scholar
  6. Collings GF, Yokoyama MT (1980) Gas liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85. Appl Environ Microbiol 39:566–571Google Scholar
  7. Davison BH, Nghiem NP, Richardson GL (2004) Succinic acid adsorption from fermentation broth and regeneration. Appl Biochem Biotechnol 113–116:653–669. doi: 10.1385/ABAB:114:1-3:653 CrossRefGoogle Scholar
  8. Dehority BA (1993) Microbial ecology of cell wall fermentation. In: Jung HG et al (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 425–453Google Scholar
  9. Du C, Lin SKC, Koutinas A, Wang R, Dorado P, Webb C (2008) A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Biores Technol 99:8310–8315. doi: 10.1016/j.biortech.2008.03.019 CrossRefGoogle Scholar
  10. Fields MW, Mallik S, Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biotechnol 54:570-574. doi: 10.1007/s002530000426 Google Scholar
  11. Gallmetzer M, Meraner J, Burgstaller W (2002) Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions. FEMS Microbiol Lett 210:221–225. doi: 10.1111/j.1574-6968.2002.tb11184.x CrossRefGoogle Scholar
  12. Gokarn RR, Eiteman MA, Martin SA, Eriksson KEL (1997) Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens. Appl Biochem Biotechnol 68:69–80. doi: 10.1007/BF02785981 CrossRefGoogle Scholar
  13. Guiavarch E, Pons A, Creuly C, Dussap CG (2008) Application of a data reconciliation method to the stoichiometric analysis of Fibrobacter succinogenes growth. Appl Biochem Biotechnol 151(2-3):201-210. doi: 10.1007/s12010-008-8172-9 CrossRefGoogle Scholar
  14. Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol–diesel fuel blends—a review. Biores Technol 96:277–285. doi: 10.1016/j.biortech.2004.04.007 CrossRefGoogle Scholar
  15. Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41(6):1461–1465. doi: 10.1016/j.procbio.2006.01.020 CrossRefGoogle Scholar
  16. Hull WQ, Lindsay CW, Baier WE (1953) Chemicals from oranges. Ind Eng Chem 45:876–890CrossRefGoogle Scholar
  17. Isar J, Agarwal L, Saran S, Saxena RK (2006) A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Biores Technol 97(13):1443–1448CrossRefGoogle Scholar
  18. Jimenez L, Perez I, Lopez F, Ariza J, Rodríguez A (2002) Ethanol–acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets. Biores Technol 83:139–143. doi: 10.1016/S0960-8524(01)00196-1 CrossRefGoogle Scholar
  19. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN (2004) Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 35:648–653. doi: 10.1016/j.enzmictec.2004.08.018 CrossRefGoogle Scholar
  20. Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27CrossRefGoogle Scholar
  21. Li Q, Xing J, Li W, Liu Q, Su Z (2009) Separation of succinic acid from fermentation broth using weak alkaline anion exchange adsorbents. Ind Eng Chem Res 48(7):3595–3599. doi: 10.1021/ie801304k CrossRefGoogle Scholar
  22. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Biores Technol 99:1736–1742. doi: 10.1016/j.biortech.2007.03.044 CrossRefGoogle Scholar
  23. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRefGoogle Scholar
  24. Matulova A, Nouaille R, Capek P, Pean M, Forano E, Delort AM (2005) Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid and solid-state nuclear magnetic resonance study. Appl Environ Microbiol 71:1247–1253. doi: 10.1128/AEM.71.3.1247-1253.2005 CrossRefGoogle Scholar
  25. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740. doi: 10.1007/s00253-007-1057-y CrossRefGoogle Scholar
  26. Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129-135. doi: 10.1002/bit.21521 Google Scholar
  27. Nouaille R, Matulova M, Delort AM, Forano E (2004) Production of maltodextrin 1-phosphate by Fibrobacter succinogenes S85. FEBS Lett 576:226–230. doi: 10.1016/j.febslet.2004.09.019 CrossRefGoogle Scholar
  28. Scott WC, Veldhuis MK (1966) Rapid estimation of recoverable oil in citrus juices by bromate titration. J Assoc Ofic Anal Chem 49:628–633Google Scholar
  29. Siles JA, Li Q, Thompson IP (2010) Biorefinery of waste orange peel. Crit Rev Biotechnol 30:63–69. doi: 10.3109/07388550903425201 CrossRefGoogle Scholar
  30. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39(3):352–361. doi: 10.1016/j.enzmictec.2005.11.043 CrossRefGoogle Scholar
  31. Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol 87:195–268. doi: 10.1007/b95986 Google Scholar
  32. Weimer PJ (1993) Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microb 160(4):288–294. doi: 10.1007/BF00292079 CrossRefGoogle Scholar
  33. Wilkins MR, Suryawati L, Maness NO, Chrz D (2007a) Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotechnol 23:1161–1168. doi: 10.1007/s11274-007-9346-2 CrossRefGoogle Scholar
  34. Wilkins MR, Widmer WW, Grohmann K (2007b) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Proc Biochem 42:1614–1619. doi: 10.1016/j.procbio.2007.09.006 CrossRefGoogle Scholar
  35. Winniczuk PP, Parish ME (1997) Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol 14:373–381. doi: 10.1006/fmic.1997.0103 CrossRefGoogle Scholar
  36. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and market for derived industrial products. Appl Microbiol Biotechnol 51:545–552. doi: 10.1007/s002530051431 CrossRefGoogle Scholar
  37. Zheng P, Dong JJ, Sun ZH, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Biores Technol 100:2425–2429. doi: 10.1016/j.biortech.2008.11.043 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Universidad de CórdobaCampus Universitario de RabanalesCórdobaSpain
  3. 3.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations