Applied Microbiology and Biotechnology

, Volume 87, Issue 6, pp 2227–2235

Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis

  • Trung Nguyen Thanh
  • Britta Jürgen
  • Melanie Bauch
  • Manuel Liebeke
  • Michael Lalk
  • Armin Ehrenreich
  • Stefan Evers
  • Karl-Heinz Maurer
  • Haike Antelmann
  • Florian Ernst
  • Georg Homuth
  • Michael Hecker
  • Thomas Schweder
Applied Microbial and Cell Physiology

Abstract

The acoABCL and acuABC operons of Bacillus licheniformis DSM13 are strongly induced at the transcriptional level during glucose starvation conditions. Primer extension analyses of this study indicate that the acoABCL operon is controlled by a sigmaL-dependent promoter and the acuABC operon by a sigmaA-dependent promoter. Transcription at the acoA promoter is repressed by glucose but induced by acetoin as soon as the preferred carbon source glucose is exhausted. The acuA promoter shows a similar induction pattern, but its activity is independent from the presence of acetoin. It is demonstrated that the acoABCL operon is mainly responsible for acetoin and 2,3-butanediol degradation in B. licheniformis.

Keywords

Bacillus licheniformis Glucose starvation Overflow metabolism Acetoin 

References

  1. Ali NO, Bignon J, Rapoport G, Debarbouille M (2001) Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J Bacteriol 183:2497–2504CrossRefGoogle Scholar
  2. Choi SK, Saier MH (2005) Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol 187:6856–6861CrossRefGoogle Scholar
  3. Clements LD, Streips UN, Miller BS (2002) Differential proteomic analysis of Bacillus subtilis nitrate respiration and fermentation in defined medium. Proteomics 2:1724–1734CrossRefGoogle Scholar
  4. Gardner JG, Escalante-Semerena JC (2008) Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme A synthetase (AcsA) in Bacillus subtilis. J Bacteriol 190:5132–5136CrossRefGoogle Scholar
  5. Gardner JG, Escalante-Semerena JC (2009) In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme a synthetase. J Bacteriol 191:1749–1755CrossRefGoogle Scholar
  6. Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC (2006) Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis. J Bacteriol 188:6715–6715CrossRefGoogle Scholar
  7. Grundy FJ, Turinsky AJ, Henkin TM (1994) Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by Ccpa. J Bacteriol 176:4527–4533Google Scholar
  8. Höhn-Bentz H, Radler F (1978) Bacterial 2, 3-butanediol dehydrogenases. Arch Microbiol 116:197–203CrossRefGoogle Scholar
  9. Hoi LT (2006) Genome-wide analysis of nutrient starvation responses of Bacillus licheniformis. Dissertation, University of Greifswald, Greifswald, GermanyGoogle Scholar
  10. Horinouchi S, Weisblum B (1982) Nucleotide-sequence and functional map of PE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type-B antibiotics. J Bacteriol 150:804–814Google Scholar
  11. Huang M, Oppermann-Sanio FB, Steinbüchel A (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181:3837–3841Google Scholar
  12. Jürgen B, Barken KB, Tobisch S, Pioch D, Wumpelmann M, Hecker M, Schweder T (2005) Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol Bioeng 92:299–307CrossRefGoogle Scholar
  13. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefGoogle Scholar
  14. Liebeke M, Brozel VS, Hecker M, Lalk M (2009) Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 83:161–173CrossRefGoogle Scholar
  15. Manners DJ (1962) Enzymic synthesis and degradation of starch and glycogen. Adv Carbohydr Chem 17:371–430Google Scholar
  16. Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2, 3-butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838CrossRefGoogle Scholar
  17. Ramos HC, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D (2000) Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol 182:3072–3080CrossRefGoogle Scholar
  18. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77CrossRefGoogle Scholar
  19. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  21. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17CrossRefGoogle Scholar
  22. Shin BS, Choi SK, Park SH (1999) Regulation of the Bacillus subtilis phosphotransacetylase gene. J Biochem 126:333–339Google Scholar
  23. Silbersack J, Jurgen B, Hecker M, Schneidinger B, Schmuck R, Schweder T (2006) An acetoin-regulated expression system of Bacillus subtilis. Appl Microbiol Biotechnol 73:895–903CrossRefGoogle Scholar
  24. Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030CrossRefGoogle Scholar
  25. Stülke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880CrossRefGoogle Scholar
  26. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  27. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211CrossRefGoogle Scholar
  28. Voigt B, Schweder T, Becher D, Ehrenreich A, Gottschalk G, Feesche J, Maurer KH, Hecker M (2004) A proteomic view of cell physiology of Bacillus licheniformis. Proteomics 4:1465–1490CrossRefGoogle Scholar
  29. Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, Evers S, Maurer KH, Hecker M, Schweder T (2007) The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7:413–423CrossRefGoogle Scholar
  30. Voigt B, Antelmann H, Albrecht D, Ehrenreich A, Maurer KH, Evers S, Gottschalk G, van Dijl JM, Schweder T, Hecker M (2009) Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. J Mol Microbiol Biotechnol 16:53–68CrossRefGoogle Scholar
  31. Waschkau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F (2008) Generation of readily transformable Bacillus licheniformis mutants. Appl Microbiol Biotechnol 78:181–188CrossRefGoogle Scholar
  32. White D (2007) Central metabolic pathways. The physiology and biochemistry of prokaryotes, 3rd edn. Oxford University Press, New York, pp 196–228Google Scholar
  33. Yon J, Fried M (1989) Precise gene fusion by PCR. Nucleic Acids Res 17:4895–4895CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Trung Nguyen Thanh
    • 1
  • Britta Jürgen
    • 1
    • 6
  • Melanie Bauch
    • 2
  • Manuel Liebeke
    • 3
    • 6
  • Michael Lalk
    • 3
    • 6
  • Armin Ehrenreich
    • 2
  • Stefan Evers
    • 4
  • Karl-Heinz Maurer
    • 4
  • Haike Antelmann
    • 5
  • Florian Ernst
    • 6
  • Georg Homuth
    • 6
  • Michael Hecker
    • 5
    • 6
  • Thomas Schweder
    • 1
    • 6
  1. 1.Pharmazeutische Biotechnologie, Institut für PharmazieErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  2. 2.Lehrstuhl für MikrobiologieFreisingGermany
  3. 3.Pharmazeutische Biologie, Institut für PharmazieErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  4. 4.Henkel AG & Co. KGaAWRC BiotechnologyDüsseldorfGermany
  5. 5.Institut für MikrobiologieErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  6. 6.ZIK FunGeneErnst-Moritz-Arndt-UniversitätGreifswaldGermany

Personalised recommendations