Applied Microbiology and Biotechnology

, Volume 87, Issue 5, pp 1803–1811 | Cite as

Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering

  • Aloke Kumar Bera
  • Miroslav Sedlak
  • Aftab Khan
  • Nancy W. Y. HoEmail author
Applied Genetics and Molecular Biotechnology


Cost-effective and efficient ethanol production from lignocellulosic materials requires the fermentation of all sugars recovered from such materials including glucose, xylose, mannose, galactose, and l-arabinose. Wild-type strains of Saccharomyces cerevisiae used in industrial ethanol production cannot ferment d-xylose and l-arabinose. Our genetically engineered recombinant S. cerevisiae yeast 424A(LNH-ST) has been made able to efficiently ferment xylose to ethanol, which was achieved by integrating multiple copies of three xylose-metabolizing genes. This study reports the efficient anaerobic fermentation of l-arabinose by the derivative of 424A(LNH-ST). The new strain was constructed by over-expression of two additional genes from fungi l-arabinose utilization pathways. The resulting new 424A(LNH-ST) strain exhibited production of ethanol from l-arabinose, and the yield was more than 40%. An efficient ethanol production, about 72.5% yield from five-sugar mixtures containing glucose, galactose, mannose, xylose, and arabinose was also achieved. This co-fermentation of five-sugar mixture is important and crucial for application in industrial economical ethanol production using lignocellulosic biomass as the feedstock.


l-arabinose Pentose fermentation l-arabitol 4-dehydrogenase l-xylulose reductase Saccharomyces cerevisiae Ethanol 



The project was financially supported by the US Department of Energy Biomass Program, Contract G017059-16649.


  1. Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–234CrossRefGoogle Scholar
  2. Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Meth Enzymol 194:182–187CrossRefGoogle Scholar
  3. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150CrossRefGoogle Scholar
  4. Bettiga M, Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40CrossRefGoogle Scholar
  5. Chevallier MR, Aigle M (1979) Qualitative detection of penicillinase produced by yeast strains carrying chimeric yeast–coli plasmids. FEBS Lett 108:179–180CrossRefGoogle Scholar
  6. Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57–58:233–242CrossRefGoogle Scholar
  7. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386CrossRefGoogle Scholar
  8. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefGoogle Scholar
  9. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859Google Scholar
  10. Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192Google Scholar
  11. Horvath IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–2173CrossRefGoogle Scholar
  12. Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRefGoogle Scholar
  13. Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678Google Scholar
  14. Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new l-arabinose fermenting yeast. Antonie Leeuwenhoek 74:237–243CrossRefGoogle Scholar
  15. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664CrossRefGoogle Scholar
  16. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409CrossRefGoogle Scholar
  17. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53CrossRefGoogle Scholar
  18. McMillan JD, Boynton BL (1994) Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–46:569–584CrossRefGoogle Scholar
  19. Metz B, de Vries RP, Polak S, Seidl V, Seiboth B (2009) The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a d-mannitol dehydrogenase and is not involved in l-arabinose catabolism. FEBS Lett 583:1309–1313CrossRefGoogle Scholar
  20. Pail M, Peterbauer T, Seiboth B, Hametner C, Druzhinina I, Kubicek CP (2004) The metabolic role and evolution of l-arabinitol 4-dehydrogenase of Hypocrea jecorina. Eur J Biochem 271:1864–1872CrossRefGoogle Scholar
  21. Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M (2001) Cloning and expression of a fungal l-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637CrossRefGoogle Scholar
  22. Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189CrossRefGoogle Scholar
  23. Sedlak M, Ho NW (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28:16–24CrossRefGoogle Scholar
  24. Sedlak M, Ho NW (2004a) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684CrossRefGoogle Scholar
  25. Sedlak M, Ho NW (2004b) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113–116:403–416CrossRefGoogle Scholar
  26. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998CrossRefGoogle Scholar
  27. Taketo A (1988) DNA transfection of Escherichia coli by electroporation. Biochim Biophys Acta 949:318–324Google Scholar
  28. Toivari MH, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249CrossRefGoogle Scholar
  29. Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897CrossRefGoogle Scholar
  30. Verho R, Putkonen M, Londesborough J, Penttila M, Richard P (2004) A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 279:14746–14751CrossRefGoogle Scholar
  31. Watanabe S, Kodaki T, Makino K (2006) Cloning, expression, and characterization of bacterial l-arabinose l-dehydrogenase involved in an alternative pathway of l-arabinose metabolism. J Biol Chem 281:2612–2623CrossRefGoogle Scholar
  32. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73:4881–4891CrossRefGoogle Scholar
  33. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Aloke Kumar Bera
    • 1
  • Miroslav Sedlak
    • 1
    • 2
  • Aftab Khan
    • 1
  • Nancy W. Y. Ho
    • 1
    • 3
    Email author
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations