Skip to main content
Log in

Strains of internal biofilm in aerobic granular membrane bioreactors

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study isolated strains in suspended liquor, the surface fouling layer, and biofilm inside hollow-fiber membranes of a membrane bioreactor (MBR); analyzed their distributions, sizes, surface charges, and growth behaviors; and determined the quantities of extracellular polymeric substances (EPS) secreted by these strains under different organic loadings. Three strains, which may penetrate the microfiltration membranes, were close relatives of the Ralstonia mannitolilytica strain SDV (GenBank Accession No. GU451066), Arthrobacter sp. BJQ-2 (GenBank Accession No. GU451067), and Actinobacterium DS3 (GenBank Accession No. GU451068). Among these three strains, only Arthrobacter sp. developed an internal biofilm. The relatively short length of Arthrobacter sp. minimizes resistance to cells moving through the membrane matrix, thereby enhancing its ability to build a biofilm in the interior surface of membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adav SS, Lee DJ (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J Haz Mater 154:1120–1126

    Article  CAS  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2007) Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Appl Microbiol Biotechnol 77:175–182

    Article  CAS  Google Scholar 

  • Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26:411–423

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Baker JS, Dudley LY (1998) Biofouling in membrane systems—a review. Desalination 118:81–90

    Article  CAS  Google Scholar 

  • Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601–610

    Article  CAS  Google Scholar 

  • Charcosset C (2006) Membrane processes in biotechnology: an overview. Biotechnol Adv 24:482–492

    Article  CAS  Google Scholar 

  • Frolund B, Keiding K, Nielsen PH (1995) Enzymatic activity in the activated sludge flocs matrix. Appl Microbiol Biotechnol 43:755–761

    Article  CAS  Google Scholar 

  • Gaudy AF (1962) Colorimetric determination of protein and carbohydrate. Ind Water Wastes 7:17–22

    CAS  Google Scholar 

  • Juang YC, Lee DJ, Lai JY (2008) Fouling layer on hollow-fibre membrane in aerobic granule membrane bioreactor. J Chin Inst Chem Engrs 39:657–661

    Article  CAS  Google Scholar 

  • Juang YC, Su A, Fang LH, Lee DJ, Lai JY (2010a) Fouling with aerobic granule membrane bioreactor (AGMBR). Water Science and Technology, accepted

  • Juang YC, Adav SS, Lee DJ, Lai JY (2010b) Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactor. Environ Sci Technol 44:1267–1273

    Google Scholar 

  • Juang YC, Lee DJ, Lai JY (2010c) Visualizing fouling layer in membrane bioreactor. Separation Science and Technology doi:10.1080/01496391003666882

  • Judd S (2004) A review of fouling of membrane bioreactors in sewage treatment. Water Sci Technol 49:229–235

    CAS  Google Scholar 

  • Judd S (2005) Fouling control in submerged membrane bioreactors. Water Sci Technol 51:27–34

    CAS  Google Scholar 

  • Jun Z, Yang FL, Meng FG, Peng A, Di W (2007) Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. J Environ Sci China 19:1281–1286

    Google Scholar 

  • Liao BQ, Bagley DM, Kraemer HE, Leppard GG, Liss SN (2004) A review of biofouling and its control in membrane separation bioreactors. Water Environ Res 76:425–436

    Article  CAS  Google Scholar 

  • Lü F, Zhang H, Chang CH, Lee DJ, He PJ, Shao LM, Su A (2008) Dissolved organic matter and estrogenic potential of landfill leachate. Chemosphere 72:1381–1386

    Article  Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2004) Industrial wastewater treatment in a membrane bioreactor: a review. Environ Progr 23:59–68

    Article  CAS  Google Scholar 

  • Ramesh A, Lee DJ, Wang ML, Hsu JP, Juang RS, Hwang KJ, Liu JC, Tseng ST (2006) Biofouling in membrane bioreactor. Sep Sci Technol 41:1345–1370

    Article  CAS  Google Scholar 

  • Tay JH, Yang P, Zhuang WQ, Tay STL, Pan ZH (2008) Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor. J Membr Sci 304:24–32

    Article  Google Scholar 

  • Visvanathan C, Ben Aim R, Parameshwaran K (2000) Membrane separation bioreactor for wastewater treatment. Crit Rev Environ Sci Technol 30:1–48

    Article  CAS  Google Scholar 

  • Wang JF, Wang X, Zhao ZG, Li JW (2008) Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor. Appl Microbiol Biotechnol 79:679–685

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project is partly supported by the State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology and by Project 50821002 (National Creative Research Groups) supported by National Nature Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juang, YC., Adav, S.S. & Lee, DJ. Strains of internal biofilm in aerobic granular membrane bioreactors. Appl Microbiol Biotechnol 86, 1987–1993 (2010). https://doi.org/10.1007/s00253-010-2527-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2527-1

Keywords

Navigation