Skip to main content
Log in

Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Furfural and acetic acid are two prevalent inhibitors to microorganisms during cellulosic ethanol production, but molecular mechanisms of tolerance to these inhibitors are still unclear. In this study, genome-wide transcriptional responses to furfural and acetic acid were investigated in Saccharomyces cerevisiae using microarray analysis. We found that 103 and 227 genes were differentially expressed in the response to furfural and acetic acid, respectively. Furfural downregulated genes related to transcriptional control and translational control, while it upregulated stress-responsive genes. Furthermore, furfural also interrupted the transcription of genes involved in metabolism of essential chemicals, such as etrahydrofolate, spermidine, spermine, and riboflavin monophosphate. Acetic acid downregulated genes encoding mitochondrial ribosomal proteins and genes involved in carbohydrate metabolism and regulation and upregulated genes related to amino acid metabolism. The results revealed that furfural and acetic acid had effects on multiple aspects of cellular metabolism on the transcriptional level and that mitochondria might play important roles in response to both furfural and acetic acid. This research has provided insights into molecular response to furfural and acetic acid in S. cerevisiae, and it will be helpful to construct more resistant strains for cellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9:720–732

    Article  CAS  Google Scholar 

  • Alvarez-Ordóñez A, Fernández A, Bernardo A, López M (2010) Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. Int J Food Microbiol 136:278–282

    Article  Google Scholar 

  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270:3189–3195

    Article  CAS  Google Scholar 

  • Blakley RL, Benkovic SJ (1984) Chemistry and biochemistry of folates. John Wiley and Sons, New York

    Google Scholar 

  • Cheng JS, Zhou X, Ding MZ, Yuan YJ (2009) Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 83:909–923

    Article  CAS  Google Scholar 

  • Coburn RF (2009) Polyamine effects on cell function: possible central role of plasma membrane PI(4, 5)P2. J Cell Physiol 221:544–551

    Article  CAS  Google Scholar 

  • Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279:9125–9138

    Article  CAS  Google Scholar 

  • Ding MZ, Tian HC, Cheng JS, Yuan YJ (2009) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144:279–286

    Article  CAS  Google Scholar 

  • Fleck CB, Brock M (2009) Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet Biol 46:473–485

    Article  CAS  Google Scholar 

  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349

    Article  CAS  Google Scholar 

  • Han PP, Yuan YJ (2009) Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. FASEB J 23:623–630

    Article  CAS  Google Scholar 

  • Li BZ, Cheng JS, Qiao B, Yuan YJ (2010) Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol 37:43–55

    Article  CAS  Google Scholar 

  • Lin FM, Qiao B, Yuan YJ (2009a) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75:3765–3776

    Article  CAS  Google Scholar 

  • Lin FM, Tan Y, Yuan YJ (2009b) Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 9:5471–5483

    Article  CAS  Google Scholar 

  • Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  CAS  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408

    Article  CAS  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25:169–177

    Article  CAS  Google Scholar 

  • Mols M, van Kranenburg R, Tempelaars MH, van Schaik W, Moezelaar R, Abee T (2010) Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. Int J Food Microbiol 137:13–21

    Article  CAS  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177

    Article  CAS  Google Scholar 

  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71:7866–7871

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454

    Article  CAS  Google Scholar 

  • Riego L, Avendaño A, DeLuna A, Rodríguez E, González A (2002) GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 293:79–85

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  • Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092

    Article  CAS  Google Scholar 

  • Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720

    Article  Google Scholar 

  • Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005) EXPANDER-an integrative program suite for microarray data analysis. BMC Bioinformatics 6:232

    Article  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169–174

    Article  CAS  Google Scholar 

  • Thomas KC, Hynes SH, Ingledew WM (2002) Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68:1616–1623

    Article  CAS  Google Scholar 

  • Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA (2006) Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol Int 30:665–671

    Article  CAS  Google Scholar 

  • Xia JM, Yuan YJ (2009) Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. J Agric Food Chem 57:99–108

    Article  CAS  Google Scholar 

  • Zakrzewska A, Boorsma A, Brul S, Hellingwerf KJ, Klis FM (2005) Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4:703–715

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the National Natural Science Foundation of China (Key Program Grant No. 20736006), the National Basic Research Program of China (“973” Program: 2007CB714301), Key Projects in the National Science and Technology Pillar Program (No.2007BAD42B02), and the International collaboration project of the Ministry of Science and Technology of the People’s Republic of China (2006DFA62400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Differentially expressed genes in response to furfural and acetic acid (DOC 47 kb)

Table S2

Downregulated genes involved in transcriptional control and RNA processing in response to furfural addition (DOC 48 kb)

Table S3

Downregulated genes involved in regulation of C-compound and carbohydrate metabolism in response to acetic acid (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, BZ., Yuan, YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 86, 1915–1924 (2010). https://doi.org/10.1007/s00253-010-2518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2518-2

Keywords

Navigation