Skip to main content

A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems

Abstract

This study presents a new coupon sampling device that can be inserted directly into the pipes within water distribution systems (WDS), maintaining representative near wall pipe flow conditions and enabling simultaneous microscopy and DNA-based analysis of biofilms formed in situ. To evaluate this sampling device, fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate changes in biofilms on replicate coupons within a non-sterile pilot-scale WDS. FISH analysis demonstrated increases in bacterial biofilm coverage of the coupon surface over time, while the DGGE analysis showed the development of increasingly complex biofilm communities, with time-specific clustering of these communities. This coupon design offers improvements over existing biofilm sampling devices in that it enables simultaneous quantitative and qualitative compositional characterization of biofilm assemblages formed within a WDS, while importantly maintaining fully representative near wall pipe flow conditions. Hence, it provides a practical approach that can be used to capture the interactions between biofilm formation and changing abiotic conditions, boundary shear stress, and turbulent driven exchange within WDS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Appenzeller BMR, Batté M, Mathieu L, Block J-C, Lahoussine V, Cavard J, Gate D (2001) Effect of adding phosphate in drinking water on bacterial growth in slightly and highly corroded pipes. Water Res 35:1100–1105

    Article  CAS  Google Scholar 

  • Batté M, Koudjonou B, Laurent P, Mathieu L, Coallier J, Prévost M (2003a) Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system. Water Res 37:1351–1361

    Article  CAS  Google Scholar 

  • Batté M, Mathieu L, Laurent P, Prévost M (2003b) Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization. Can J Microbiol 49:741–753

    Article  Google Scholar 

  • Batté M, Appenzeller BMR, Grandjean D, Fass S, Gauthier V, Jorand F, Mathieu L, Boualam M, Saby S, Block JC (2004) Biofilms in drinking water distribution systems. Rev Environ Sci Biotechnol 2:147–168

    Article  Google Scholar 

  • Baylis JR, Chase ES, Cox CR, Ellms JW, Emerson CA, Knouse HV, Streeter HW (1930) Bacterial aftergrowths in water distribution systems. Am J Public Health Nations Health 20:485–489

    CAS  Google Scholar 

  • Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302

    Article  CAS  Google Scholar 

  • Camper AK, Jones JT, Hayes WL (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Microbiol 62:4014–4018

    CAS  Google Scholar 

  • Chang YC, Puil ML, Biggerstaff J, Randall AA, Schulte A, Taylor JS (2003) Direct estimation of biofilm density on different pipe material coupons using a specific DNA-probe. Mol Cell Probes 17:237–243

    Article  CAS  Google Scholar 

  • Chu CW, Lu CY, Lee CM (2005) Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J Environ Manage 106:1328–1335

    Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  Google Scholar 

  • Eichler S, Ghristen R, Holtje C, Westphal P, Botel J, Brettar I, Mehling A, Höfle M (2006) Comparison and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72:1858–1872

    Article  CAS  Google Scholar 

  • Gagnon GA, Rand JL, O’Leary KC, Rygel AC, Chauret C, Andrews RC (2005) Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res 39:1809–1817

    Article  CAS  Google Scholar 

  • Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlon RM (2005) Statistical assessment of a laboratory method for growing biofilms. Microbiology 151:757–762

    Article  CAS  Google Scholar 

  • Husband PS, Boxall JB, Saul AJ (2008) Laboratory studies investigating the processes leading to discolouration in water distribution networks. Water Res 42:4309–4318

    Article  CAS  Google Scholar 

  • Juhna T, Birzniece D, Larsson S, Zulenkovs D, Sharipo A, Azevedo NF, Menard-Szczebara F, Castagnet S, Feliers C, Keevil CW (2007) Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Appl Environ Microbiol 73:7456–7464

    Article  CAS  Google Scholar 

  • Kalmbach S, Manz W, Szewzyk U (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol Ecol 22:265–279

    Article  CAS  Google Scholar 

  • Kharazmi A, Giwercman B, Hoiby N (1999) The Robbins device in biofilm research. Meth Enzymol 310:207–215

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd, West Sussex, UK, pp 115–175

    Google Scholar 

  • LeChevallier MW, Babcock TM, Lee RG (1987) Examination and characterization of distribution system biofilms. Appl Environ Microbiol 53:2714–2724

    CAS  Google Scholar 

  • LeChevallier MW, Norton CD, Camper A, Morin P, Ellis B, Jones W, Rompré A, Prévost M, Coallier J, Servais P, Holt D, Delanoue A, Colbourne J (1998) Microbial impact of biological filtration. AWWA Research Foundation, USA, p 180

    Google Scholar 

  • Lehtola MJ, Miettinen IT, Keinãnen MM, Kekki T, Laine O, Hirvonen A, Vartiainen T, Martikainen P (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779

    Article  CAS  Google Scholar 

  • Lehtola MJ, Laxander M, Miettinen IT, Hirvonen A, Vartiainen T, Martikainen PJ (2006) The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes. Water Res 40:2151–2060

    Article  CAS  Google Scholar 

  • Lund V, Ormerod K (1995) The influence of disinfection processes on biofilm formation in water distribution systems. Water Res 29:1013–1021

    Article  CAS  Google Scholar 

  • Manz W, Szewzyk U, Ericsson P, Amann R, Schleifer KH, Stenstron TA (1993) In-situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S ribosomal RNA directed and 23S ribosomal RNA directed fluorescent oligonucleotide probes. Appl Environ Microbiol 59:2293–2298

    CAS  Google Scholar 

  • Martiny AC, Jørgensen TM, Albrechtsen H-J, Arvin E, Molin S (2003) Long-term succession in structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69:6899–6907

    Article  CAS  Google Scholar 

  • McCoy WF, Bryers JD, Robbins J, Costerton JW (1981) Observations of fouling biofilm formation. Can J Microbiol 27:910–917

    Article  CAS  Google Scholar 

  • Millar MR, Linton CJ, Sheriff A (2001) Use of continuous culture system linked to a modified Robbins device or flow cell to study attachment of bacteria to surfaces. Microbial Growth Biofilms 337:43–62

    CAS  Google Scholar 

  • Möhle RB, Langemann T, Haesner M, Augustin W, Scholl S, Neu TR, Hempel DC, Horn H (2007) Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamics gauging using a novel rotating disc biofilm reactor. Biotechnol Bioeng 98:747–755

    Article  CAS  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Norton CD, LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66:268–276

    Article  CAS  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotech 34:577–588

    Article  CAS  Google Scholar 

  • Parent A, Fass S, Dincher ML, Readoner D, Gatel D, Block JC (1996) Control of coliform growth in drinking water distribution systems. J Chart Inst Water Environ Manage 10(6):442–445

    Article  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  Google Scholar 

  • Prévost M, Rompré A, Coallier J, Servais P, Laurent P, Clément B, Lafrance P (1998) Suspended bacterial biomass and activity in full-scale drinking water distribution systems: impact of water treatment. Water Res 32:1393–1406

    Article  Google Scholar 

  • Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935

    Article  CAS  Google Scholar 

  • Sharma MO, Bhosle NB, Wagh AB (1990) Methods for removal and estimation of microfouling biomass. Ind J Mar Sci 19:174–176

    Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer K-H (2000) Microbiological safety of drinking water. Ann Rev Microbiol 54:81–127

    Article  CAS  Google Scholar 

  • Volk CJ, LeChevallier MW (1999) Impacts of the reduction of nutrient levels on bacterial water quality in distribution systems. Appl Environ Microbiol 65:4957–4966

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a European Union FP6 Marie-Curie Transfer of Knowledge grant “Microbiology of Urban Water Systems” (grant number 42444) awarded to CAB, AMO, and JBB. CAB and JBB would also like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for the provision of an Advanced Research Fellowship (EP/E053556/01) and Challenging Engineering award (EP/G029946/1), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Biggs.

Additional information

P.D. and R.S. made equal contributions to this research.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deines, P., Sekar, R., Husband, P.S. et al. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems. Appl Microbiol Biotechnol 87, 749–756 (2010). https://doi.org/10.1007/s00253-010-2510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2510-x

Keywords

  • Biofilms
  • CARD-FISH
  • DGGE
  • Drinking water distribution systems
  • Sampling coupon