Applied Microbiology and Biotechnology

, Volume 86, Issue 4, pp 1017–1025 | Cite as

Biotechnological production of erythritol and its applications

  • Hee-Jung Moon
  • Marimuthu Jeya
  • In-Won Kim
  • Jung-Kul LeeEmail author


Erythritol, a four-carbon polyol, is a biological sweetener with applications in food and pharmaceutical industries. It is also used as a functional sugar substitute in special foods for people with diabetes and obesity because of its unique nutritional properties. Erythritol is produced by microbial methods using mostly osmophilic yeasts and has been produced commercially using mutant strains of Aureobasidium sp. and Pseudozyma tsukubaensis. Due to the high yield and productivity in the industrial scale of production, erythritol serves as an inexpensive starting material for the production of other sugars. This review focuses on the approaches for the efficient erythritol production, strategies used to enhance erythritol productivity in microbes, and the potential biotechnological applications of erythritol.


Application Erythritol Erythrose reductase Industrial production Sweetener 



This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science & Technology, Republic of Korea.


  1. Aoki M, Pastore G, Park Y (1993) Microbial transformation of sucrose and glucose to erythritol. Biotechno Lett 15:383–388CrossRefGoogle Scholar
  2. Bell A, Wheeler M (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  3. Bernt W, Borzelleca J, Flamm G, Munro I (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:191CrossRefGoogle Scholar
  4. Bilanx M, Flourie B, Jaequemmim C, Messing B (1991) Sugar alcohols. Handbook of Sweeteners. Glasgow, Blackie Academic & Professional, p 72.Google Scholar
  5. Braun M, Niederpruem D (1969) Erythritol metabolism in wild-type and mutant strains of Schizophyllum commune. J Bacteriol 100:625Google Scholar
  6. Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv Microb Physiol 17:181–242CrossRefGoogle Scholar
  7. Cerestar Holding BV (1999) Application for assessment of erythritol prior to its authorization. Mitubishi Chemical Corporation and Nikken Chemicals Co. Ltd.Google Scholar
  8. Chu N, Ballou C (1961) The synthesis and properties of d-glycero-tetrulose 1-phosphate and 4-phosphate (d-erythrulose 1-phosphate and 4-phosphate). J Am Chem Soc 83:1711–1715CrossRefGoogle Scholar
  9. de Cock P (1999) Erythritol: a novel noncaloric sweetener ingredient. Low-Calorie Sweeteners: Present and Future 85:110–116CrossRefGoogle Scholar
  10. de Vries W (1966) Carbohydrate metabolism of Bifidobacterium bifidum. Antonie van Leeuwenhoek 32:452–452CrossRefGoogle Scholar
  11. den Hartog G, Boots A, Adam-Perrot A, Brouns F, Verkooijen I, Weseler A, Haenen G, Bast A (2009) Erythritol is a sweet antioxidant. Nutrition. doi: 10.1016/j.nut.2009.05.004
  12. Dijkema C, Kester H, Visser J (1985) 13C NMR studies of carbon metabolism in the hyphal fungus Aspergillus nidulans. Proc Natl Acad Sci USA 82:14–18CrossRefGoogle Scholar
  13. Frost and Sullivan (2007) Strategic analysis of the erythritol market. In: Frost & Sullivan (eds) Strategic Analysis of the U.S. Polyols Markets.Google Scholar
  14. Goldberg I (1994) Functional foods: designer foods, pharmafood, nutraceuticals. Chapman & Hall, New York, N YGoogle Scholar
  15. Goldberg M, Racker E (1962) Formation and isolation of a glycolaldehyde-phosphoketolase intermediate. J Biol Chem 237:3841–3842Google Scholar
  16. Goossens J, Roper H (1994) Erythritol: a new sweetener. Confectionery Production (United Kingdom) 24:182–188Google Scholar
  17. Goossens J, Gonze M (1996) Nutritional properties and applications of erythritol: a unique combination? In: Grenby TH (ed) Advances in sweeteners. Blackie A&P, Bodmin, pp 150–186Google Scholar
  18. Greenley D, Smith D (1979) A novel pathway of glucose catabolism in Thiobacillus novellus. Arch Microbiol 122:257–261CrossRefGoogle Scholar
  19. Hajny G, Smith J, Garver J (1964) Erythritol production by a yeastlike fungus. Appl Environ Microbiol 12:240–246Google Scholar
  20. Heath E, Hurwitz J, Horecker B, Ginsburg A (1958) Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J Biol Chem 231:1009–1029Google Scholar
  21. Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G (1993) Metabolism of erythritol in humans: comparison with glucose and lactitol. Br J Nutr 69:169–176CrossRefGoogle Scholar
  22. Hirata Y, Igarashi K, Ezaki S, Atomi H, Imanaka T (1999) High-level production of erythritol by strain 618A-01 isolated from pollen. J Biosci Bioeng 87:630–635CrossRefGoogle Scholar
  23. Holzer H, Schroter W (1962) Zum wirkungsmechanismus der phosphoketolase I. Oxydation verschiedener substrate mit ferricyanid. Biochim Biophys Acta 65:271–288CrossRefGoogle Scholar
  24. Horecker BL, Mehler AH (1955) Carbonydrate metabolism. Annu Rev Biochem 24:207–272CrossRefGoogle Scholar
  25. Hurwitz J (1958) Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim Biophys Acta 28:599–602CrossRefGoogle Scholar
  26. Ishizuka H, Tokuokak K, Sasaki T, Taniguchi H (1992) Purification and some properties of an erythrose reductase from an Aureobasidium sp. mutant. Biosci Biotechnol Biochem 56:941–945CrossRefGoogle Scholar
  27. Ishizuka H, Wako K, Kasumi T, Sasaki T (1989) Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferment Bioeng 68:310–314CrossRefGoogle Scholar
  28. Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK (2009) Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83:225–231CrossRefGoogle Scholar
  29. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49:209–224CrossRefGoogle Scholar
  30. Kasumi T, Sasaki T, Taki A, Nakayama K, Oda T, Wako K (1998) Development of erythritol fermentation and its applications. J Appl Glycosci 45:131–136Google Scholar
  31. Kim KA, Noh BS, Lee JK, Kim SY, Park YC, Oh DK (2000) Optimization of culture conditions for erythritol production by Torula sp. J Microbiol Biotechnol 10:69–74Google Scholar
  32. Kim SY, Lee KH, Kim JH, Oh DK (1997) Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnol Lett 19:727–729CrossRefGoogle Scholar
  33. Koh ES, Lee TH, Lee DY, Kim HJ, Ryu YW, Seo JH (2003) Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol Lett 25:2103–2105CrossRefGoogle Scholar
  34. Koutinas A, Wang R, Webb C (2007) The biochemurgist-bioconversion of agricultural raw materials for chemical production. Biotechnol Biofuels 1:24–38Google Scholar
  35. Lee DY, Park YC, Kim HJ, Ryu YW, Seo JH (2003a) Proteomic analysis of Candida magnoliae strains by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 3:2330–2338CrossRefGoogle Scholar
  36. Lee JK, Ha SJ, Kim SY, Oh DK (2000) Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnol Lett 22:983–986CrossRefGoogle Scholar
  37. Lee JK, Ha SJ, Kim SY, Oh DK (2001) Increased erythritol production in Torula sp. with inositol and phytic acid. Biotechnol Lett 23:497–500CrossRefGoogle Scholar
  38. Lee JK, Koo BS, Kim SY (2002a) Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl Environ Microbiol 68:4534–4538CrossRefGoogle Scholar
  39. Lee KH, Seo JH, Ryu YW (2002b) Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Korean J Biotechnol Bioeng 17:509–514Google Scholar
  40. Lee JK, Jung HM, Kim SY (2003b) 1, 8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Appl Environ Microbiol 69:3427–3434CrossRefGoogle Scholar
  41. Lee JK, Kim SY, Ryu YW, Seo JH, Kim JH (2003c) Purification and characterization of a novel erythrose reductase from Candida magnoliae. Appl Environ Microbiol 69:3710–3718CrossRefGoogle Scholar
  42. Lee KJ, Lim JY (2003) Optimized conditions for high erythritol production by Penicillium sp. KJ-UV29, mutant of Penicillium sp. KJ81. Biotechnol Bioprocess Eng 8:173–178CrossRefGoogle Scholar
  43. Li G, Otani T, Fujita H, Tajima H, Kawakami H (2005) Polyol polymers, meso-erythritol polymers and their aliphatic acid esters and aliphatic ethers US Patent 6838544.Google Scholar
  44. Lin S, Wen C, Huang C, Chu W. (2002). Erythritol-producing moniliella strains. US Patent 20030008378A1.Google Scholar
  45. Livesay G (2001) Tolerance of low-digestible carbohydrates; a general view. Br J Nutr 85(1):S7–S16CrossRefGoogle Scholar
  46. Makinen K, Isotupa K, Kivilompolo T, Makinen P, Toivanen J, Soderling E (2001) Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans Streptococci. Caries Res 35:129–135CrossRefGoogle Scholar
  47. Maret W, Auld D (1988) Purification and characterization of human liver sorbitol dehydrogenase. Biochemistry 27:1622–1628CrossRefGoogle Scholar
  48. Mizanur RMD, Takeshita K, Moshino H, Takada G, Izumori K (2001) Production of l-erythrose via l-erythrulose from erythritol using microbial and enzymatic reactions. J Biosci Bioengi 92:237–241CrossRefGoogle Scholar
  49. Munro C, Bernt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bär EA, Modderman J (1998) Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food and Chemical Toxicol 36:1139–1174CrossRefGoogle Scholar
  50. Oh DK, Cho CH, Lee JK, Kim SY (2001) Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. J Ind Microbiol Biotechnol 26:248–252CrossRefGoogle Scholar
  51. Onish H, Saito S (1959) Polyalcohols in soy sauce. Hakko Kogaku Zasshi 37:457–461Google Scholar
  52. Onishi H (1960) Studies on osmophilic yeasts. Part IX. Isolation of a new obligate halophilic yeast and some consideration on halophilism. Bull Agric Chem Soc Jpn 24:226–230Google Scholar
  53. Ookura T, Azuma K, Isshiki K, Taniguchi H, Kasumi T, Kawamura Y (2005) Primary structure analysis and functional expression of erythrose reductases from erythritol-producing fungi (Trichosporonoides megachiliensis SNG-42). Biosci Biotechnol Biochem 69:944–951CrossRefGoogle Scholar
  54. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1, 3-propanediol, citric acid and single cell oil. Bioenergy Res 32:60–71CrossRefGoogle Scholar
  55. Park JB, Seo BC, Kim JR, Park YK (1998) Production of erythritol in fed-batch cultures of Trichosporon sp. J Ferment Bioeng 86:577–580CrossRefGoogle Scholar
  56. Park YK, Koo MH, Oliveira IM (1996) Biochemical characteristics of osmophilic yeasts isolated from pollens and honey. Biosci Biotechnol Biochem 60:1872–1873CrossRefGoogle Scholar
  57. Pavlenko G, Loitsyanskaya M, Nemirovskaya N (1981) The melanin pigment of gluconobacter oxydans. Mol Gen Microbiol Virol 50:718–722Google Scholar
  58. Pfeifer V, Sohns V, Conway H, Lancaster E, Dabic S, Griffin E (1960) Two stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind Eng Chem Res 52:201–206CrossRefGoogle Scholar
  59. Racker E (1962) Fructose-6-phosphate phosphoketolase from Acetobacter xylinum. Methods Enzymol 5:276–280CrossRefGoogle Scholar
  60. Rymowicz W, Rywinska A, Arowska B, Juszczyk P (2006) Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap 60:391–394CrossRefGoogle Scholar
  61. Rymowicz W, Rywinska A, Gładkowski W (2008) Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem Pap 62:239–246CrossRefGoogle Scholar
  62. Rymowicz W, Rywinska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380CrossRefGoogle Scholar
  63. Ryu YW, Park CY, Park JB, Kim SY, Seo JH (2000) Optimization of erythritol production by Candida magnoliae in fed-batch culture. J Ind Microbiol Biotechnol 25:100–103CrossRefGoogle Scholar
  64. Sawada K, Taki A, Nakano S, Asaba E, Maehara T (2002) Scale-up of erythritol continuous culture. Program and Abstract fo the annual meeting of the Japan Society for Bioscience, Biochemistry and Agrochemistry 3-2 Da-05.Google Scholar
  65. Sawada K, Taki A, Yamakawa T, Seki M (2009) Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J Biosci Bioeng 108:385–390CrossRefGoogle Scholar
  66. Schramm M, Klybas V, Racker E (1958) Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem 233:1283Google Scholar
  67. Seo JH, Ryu YW, Jung SR, Kim SY (2001). September 2001. Fermentation processes for preparing erythritol by a high salt tolerant mutant of Candida sp. US Patent 6287830B1.Google Scholar
  68. Sgorbati B, Lenaz G, Casalicchio F (1976) Purification and properties of two fructose-6-phosphate phosphoketolases in Bifidobacterium. Antonie Van Leeuwenhoek 42:49–57CrossRefGoogle Scholar
  69. Shindou T, Sasaki Y, Eguchi T, Euguchi T, Hagiwara K, Ichikawa T (1989) Identification of erythritol by HPLC and GC-MS and quantitative measurement in pulps of various fruits. J Agric Food Chem 37:1474–1476CrossRefGoogle Scholar
  70. Shindou T, Sasaki Y, Miki H, Eguchi T, Hagiwara K, Ichikawa T (1988) Determination of erythritol in fermented foods by high performance liquid chromatography. Shokuhin Eiseigaku Zasshi 29(6):419–422Google Scholar
  71. Tokuoka K, Ishizuka H, Wako K, Taniguchi H (1992) Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J Gen Appl Microbiol 38:145–155CrossRefGoogle Scholar
  72. Van Acker S, Van Den Berg D, Tromp M, Griffioen D, Van Bennekom W, Van Der Vijgh W, Bast A (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20:331–342CrossRefGoogle Scholar
  73. Veiga-Da-Cunha M, Firme P, San Romao M, Santos H (1992) Application of 13C nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl Environ Microbiol 58:2271Google Scholar
  74. Veiga-da-Cunha M, Santos H, Van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941Google Scholar
  75. Wheeler M (1982) Melanin biosynthesis in Verticillium dahliae: dehydration and reduction reactions in cell-free homogenates [Fungi, reactions to fungicides]. Exp Mycol 6(2):171–179CrossRefGoogle Scholar
  76. Wheeler M, Stipanovic R (1985) Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis. Arch Microbiol 142:234–241CrossRefGoogle Scholar
  77. Yang SW, Park JB, Han NS, Ryu YW, Seo JH (1999) Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnol Lett 21:887–890CrossRefGoogle Scholar
  78. Yokozawa T, Kim H, Cho E (2002) Erythritol attenuates the diabetic oxidative stress through modulating glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J Agric FoodChem 50:5485–5489CrossRefGoogle Scholar
  79. Yoshida H, Hayashi J, Sugahara T (1986) Studies on free sugars, free sugar alcohols and organic acids of wild mushrooms. J Japan Soc Food Sci Technol (Japan) 33(6):426–433Google Scholar
  80. Yoshida H, Sugahara T, Hayashi J (1984) Free sugars and free sugar alcohols of mushrooms. Nippon Shokuhin Kogyo Gakkashi 31(12):765–771Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hee-Jung Moon
    • 1
  • Marimuthu Jeya
    • 2
  • In-Won Kim
    • 2
  • Jung-Kul Lee
    • 2
    • 3
    Email author
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulSouth Korea
  2. 2.Department of Chemical EngineeringKonkuk UniversitySeoulSouth Korea
  3. 3.Institute of Biomedical Science and TechnologyKonkuk UniversitySeoulSouth Korea

Personalised recommendations