Skip to main content
Log in

Perspectives of engineering lactic acid bacteria for biotechnological polyol production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarnikunnas J, Ronnholm K, Palva A (2002) The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl Microbiol Biotechnol 59:665–671

    Article  CAS  Google Scholar 

  • Aarnikunnas J, Von Weymarn N, Ronnholm K, Leisola M, Palva A (2003) Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate. Biotechnol Bioeng 82:653–663

    Article  CAS  Google Scholar 

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467

    Article  CAS  Google Scholar 

  • Alcántara C, Sarmiento-Rubiano LA, Monedero V, Deutscher J, Pérez-Martínez G, Yebra MJ (2008) Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Appl Environ Microbiol 74:5731–5740

    Article  Google Scholar 

  • Arrigoni E, Brouns F, Amadò R (2005) Human gut microbiota does not ferment erythritol. Br J Nutr 94:643–646

    Article  CAS  Google Scholar 

  • Baur S, Marles-Wright J, Buckenmaier S, Lewis RJ, Vollmer W (2009) Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae. J Bacteriol 191:1200–1210

    Article  CAS  Google Scholar 

  • Bernt WO, Borzelleca JF, Flamm G, Munro IC (1996) Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 24:S191–S197

    Article  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  CAS  Google Scholar 

  • Bor YC, Moraes C, Lee SP, Crosby WL, Sinskey AJ, Batt CA (1992) Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene 114:127–132

    Article  CAS  Google Scholar 

  • Branny P, de la Torre F, Garel JR (1998) An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase. Microbiology 144:905–914

    Article  CAS  Google Scholar 

  • Chaillou S, Pouwels PH, Postma PW (1999) Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. J Bacteriol 181:4768–4773

    CAS  Google Scholar 

  • Chaturvedi V, Bartiss A, Wong B (1997) Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J Bacteriol 179:157–162

    CAS  Google Scholar 

  • Cogan JF, Walsh D, Condon S (1989) Impact of aeration on the metabolic end-products formed from glucose and galactose by Streptococcus lactis. J App Bacteriol 66:77–84

    CAS  Google Scholar 

  • da Cunha MA, Converti A, Santos JC, Ferreira ST, da Silva SS (2009) PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. App Biochem Biotechnol 157:527–537

    Article  Google Scholar 

  • de Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ (2010) Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol 85:1915–1922

    Article  CAS  Google Scholar 

  • de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79

    Article  Google Scholar 

  • Duvnjak Z, Turcotte G, Duan ZD (1991) Production of sorbitol and ethanol from Jerusalem artichokes by Saccharomyces cerevisiae ATCC36859. Appl Microbiol Biotechnol 35:711–715

    Article  CAS  Google Scholar 

  • Ferain T, Schanck AN, Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    CAS  Google Scholar 

  • Finney M, Smullen J, Foster HA, Brokx S, Storey DM (2007) Effects of low doses of lactitol on faecal microflora, pH, short chain fatty acids and gastrointestinal symptomology. Eur J Nutr 46:307–314

    Article  CAS  Google Scholar 

  • Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287

    CAS  Google Scholar 

  • Goffin P, Muscariello L, Lorquet F, Stukkens A, Prozzi D, Sacco M, Kleerebezem M, Hols P (2006) Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Appl Envir Microbiol 72:7933–7940

    Article  CAS  Google Scholar 

  • Gosalbes MJ, Monedero V, Alpert CA, Pérez-Martínez G (1997) Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148:83–89

    Article  CAS  Google Scholar 

  • Gottschalk G (1979) Bacterial metabolism, 1st edn. Springer-Verlag, New York

    Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  • Hausman SZ, London J (1987) Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei. J Bacteriol 169:1651–1655

    CAS  Google Scholar 

  • Hausman SZ, Thompson J, London J (1984) Futile xylitol cycle in Lactobacillus casei. J Bacteriol 160:211–215

    CAS  Google Scholar 

  • Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M (2005) Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J Biotechnol 116:283–294

    Article  CAS  Google Scholar 

  • Hugenholtz J, Smid EJ (2002) Nutraceutical production with food-grade microorganisms. Curr Opin Biotechnol 13:497–507

    Article  CAS  Google Scholar 

  • Hugenholtz J, Perdon L, Abee T (1993) Growth and energy generation by Lactococcus lactis subsp. lactis biovar diacetylactis during citrate metabolism. Appl Envir Microbiol 59:4216–4222

    Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114

    Article  CAS  Google Scholar 

  • Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235

    Article  CAS  Google Scholar 

  • Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK (2009) Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83:225–231

    Article  CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leuwenhoek 49:209–224

    Article  CAS  Google Scholar 

  • Kets EPW, Galinski MA, de Wit M, de Bont JAM, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solution in Pseudomonas putida S12. J Bacteriol 178:6665–6670

    CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Nat Aca of Sci 100:1990–1995

    Article  CAS  Google Scholar 

  • Kohl ES, Leet TH, Lee DY, Kim HJ, Ryu YW, Seo JH (2003) Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol Lett 25:2103–2105

    Article  Google Scholar 

  • Korakli M, Vogel RF (2003) Purification and characterisation of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  Google Scholar 

  • Kusserow B, Schimpf S, Claus P (2003) Hydrogenation of glucose to sorbitol over nickel and ruthenium catalysts. Adv Synth Catal 345:289–299

    Article  CAS  Google Scholar 

  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73:1864–1872

    Article  CAS  Google Scholar 

  • Lee JK, Song JY, Kim SY (2003) Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnol Prog 19:768–775

    Article  CAS  Google Scholar 

  • Lehninger (2004) Principles of biochemistry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Liu S, Saha B, Cotta M (2005) Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis. Appl Biochem Biotechnol 121–124:391–401

    Article  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  • Lokman BC, Heerikhuisen M, Leer RJ et al (1997) Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 179:5391–5397

    CAS  Google Scholar 

  • London J, Hausman S (1982) Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei. J Bacteriol 150:657–661

    CAS  Google Scholar 

  • Loos H, Krämer R, Sahm H, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693

    CAS  Google Scholar 

  • Lopez de Felipe F, Hugenholz J (1999) Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol Lett 179:461–466

    Article  CAS  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  Google Scholar 

  • Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–345

    Article  CAS  Google Scholar 

  • Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57:554–565

    Article  CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman C, Gasson MJ, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267:3859–3868

    Article  CAS  Google Scholar 

  • Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, Ramos A, Santos H (2002) Is the Glycolytic Flux in Lactococcus lactis Primarily controlled by the redox harge? Kinetics of NAD+ and NADH pools determined in vivo by 13C NMR. J Biol Chem 277:28088–28098

    Article  CAS  Google Scholar 

  • Nissen L, Pérez-Martínez G, Yebra MJ (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett 249:177–183

    Article  CAS  Google Scholar 

  • Nyyssola A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from D-xylose by recombinant Lactococcus lactis. J Biotechnol 118:55–66

    Article  Google Scholar 

  • Oda Y, Iwami M, Sakurai S (2005) Membrane-bound sorbitol 6-phosphatase in fat body cells controls the dynamics of sorbitol 6-phosphate, a major hemolymph sugar in the silkworm. Insect Biochem Mol Biol 35:1284–1292

    Article  CAS  Google Scholar 

  • Park YC, Lee DY, Lee DH, Kim HJ, Ryu YW, Seo JH (2005) Proteomics and physiology of erythritol-producing strains. J Chromatogr B Analyt Technol Biomed Life Sci 815:251–260

    Article  CAS  Google Scholar 

  • Patra F, Tomar SK, Arora S (2009) Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J Food Sci 74:16–23

    Article  Google Scholar 

  • Poolman B, Bosman B, Kiers J, Konings WN (1987) Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J Bacteriol 169:5887–5890

    CAS  Google Scholar 

  • Povelainen M, Miasnikov AN (2006) Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis. Biotechnol J 1:214–219

    Article  CAS  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31

    Article  CAS  Google Scholar 

  • Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem 42:1609–1613

    Article  CAS  Google Scholar 

  • Rico J, Yebra MJ, Pérez-Martínez G, Deutscher J, Monedero V (2008) Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production. J Ind Microbiol Biotechnol 35:579–586

    Article  CAS  Google Scholar 

  • Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380

    Article  CAS  Google Scholar 

  • Saha BC (2004) Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius. Biotechnol Prog 20:537–542

    Article  CAS  Google Scholar 

  • Saha B (2006) A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 72:676–680

    Article  CAS  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107:506–511

    Article  CAS  Google Scholar 

  • Sarmiento-Rubiano LA, Zúñiga M, Pérez-Martínez G, Yebra MJ (2007) Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Res Microbiol 158:694–701

    Article  CAS  Google Scholar 

  • Sasaki Y, Laivenieks M, Zeikus JG (2005) Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl Microbiol Biotechnol 68:36–41

    Article  CAS  Google Scholar 

  • Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature Biotechnol 15:448–452

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  CAS  Google Scholar 

  • Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  Google Scholar 

  • Sjoberg A, Hahn-Hagerdal B (1989) {beta}-glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis. Appl Envir Microbiol 55:1549–1554

    Google Scholar 

  • Smart JB, Thomas TD (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl Envir Microbiol 53:533–541

    CAS  Google Scholar 

  • Söderling EM (2009) Xylitol, mutans streptococci, and dental plaque. Adv Dent 21:74–78

    Google Scholar 

  • Söderling EM, Hietala-Lenkkeri AM (2009) Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol 60:25–29

    Article  Google Scholar 

  • Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    Article  CAS  Google Scholar 

  • Thompson J, Torchia DA (1984) Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J Bacteriol 158:791–800

    CAS  Google Scholar 

  • Toivari MH, Maaheimo H, Penttilä M, Ruohonen L (2009) Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Appl Microbiol Biotechnol 85:731–739

    Article  Google Scholar 

  • Tomita S, Furihata K, Nukada T, Satoh E, Uchimura T, Okada S (2009) Structures of two monomeric units of teichoic acid prepared from the cell wall of Lactobacillus plantarum NRIC 1068. Biosci Biotechnol Biochem 73:530–535

    Article  CAS  Google Scholar 

  • van Loveren C (2004) Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res 38:286–293

    Article  Google Scholar 

  • Veiga-da-Cunha M, Santos H, Van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948

    CAS  Google Scholar 

  • Viana R, Yebra MJ, Galan JL, Monedero V, Pérez-Martínez G (2005) Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res Microbiol 156:641–649

    Article  CAS  Google Scholar 

  • Vongsuvanlert V, Tani Y (1988) Characterization of D-sorbitol dehydrogenase involved in D-sorbitol production of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. Agric Biol Chem 52:419–426

    CAS  Google Scholar 

  • von Weymarn N, Kiviharju K, Leisola M (2002) High-level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  Google Scholar 

  • Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270

    Article  CAS  Google Scholar 

  • Wei W, Wu K, Qin Y, Xie Z, Zhu X (2001) Intergeneric protoplast fusion between Kluyveromyces and Saccharomyces cerevisiae—to produce sorbitol from Jerusalem artichokes. Biotech Let 23:799–803

    Article  CAS  Google Scholar 

  • Wisselink HW, Mars AE, van der Meer P, Eggink G, Hugenholtz J (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl Environ Microbiol 70:4286–4292

    Article  CAS  Google Scholar 

  • Wisselink HW, Moers AP, Mars AE, Hoefnagel MH, de Vos WM, Hugenholtz J (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl Environ Microbiol 71:1507–1514

    Article  CAS  Google Scholar 

  • Woodyer RD, Wymer NJ, Racine FM, Khan SN, Saha BC (2008) Efficient production of L-ribose with a recombinant Escherichia coli biocatalyst. Appl Environ Microbiol 74:2967–2975

    Article  CAS  Google Scholar 

  • Yebra MJ, Pérez-Martínez G (2002) Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei. Microbiology 148:2351–2359

    CAS  Google Scholar 

  • Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G (2000) Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182:155–163

    Article  CAS  Google Scholar 

  • Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869

    CAS  Google Scholar 

  • Zumbé A, Lee A, Storey D (2001) Polyols in confectionery: the route to sugar-free, reduced sugar and reduced calorie confectionery. Br J Nutr 85:S31–S45

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by funds of the Spanish Ministry for Science and Innovation (Projects AGL2004-03886, PET2005-0619 and Consolider Fun-c-Food CSD2007-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Yebra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monedero, V., Pérez-Martínez, G. & Yebra, M.J. Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86, 1003–1015 (2010). https://doi.org/10.1007/s00253-010-2494-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2494-6

Keyword

Navigation