Applied Microbiology and Biotechnology

, Volume 86, Issue 3, pp 791–804 | Cite as

Cofactor-independent oxidases and oxygenases

  • Susanne Fetzner
  • Roberto A. Steiner


Whereas the majority of O2-metabolizing enzymes depend on transition metal ions or organic cofactors for catalysis, a significant number of oxygenases and oxidases neither contain nor require any cofactor. Among the cofactor-independent oxidases, urate oxidase, coproporphyrinogen oxidase, and formylglycine-generating enzyme are of mechanistic as well as medical interest. Formylglycine-generating enzyme is also a promising tool for protein engineering as it can be used to equip proteins with a reactive aldehyde function. PqqC, an oxidase in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, catalyzes an eight-electron ring-closure oxidation reaction. Among bacterial oxygenases, quinone-forming monooxygenases involved in the tailoring of polyketides, the dioxygenase DpgC found in the biosynthesis of a building block of vancomycin and teicoplanin antibiotics, luciferase monooxygenase from Renilla sp., and bacterial ring-cleaving 2,4-dioxygenases active towards 3-hydroxy-4(1H)-quinolones have been identified as cofactor-independent enzymes. Interestingly, the 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases as well as Renilla luciferase use an α/β-hydrolase architecture for oxygenation reactions. Cofactor-independent oxygenases and oxidases catalyze very different reactions and belong to several different protein families, reflecting their diverse origin. Nevertheless, they all may share the common mechanistic concept of initial base-catalyzed activation of their organic substrate and “substrate-assisted catalysis.”


Oxygen Oxygenase Oxidase Cofactor-independent enzymes α/β-hydrolase fold 



Work in the laboratory of S.F. on cofactor-independent dioxygenases and on bacterial alkylquinolone metabolism has been supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft; FE 383/15-1 and 16-1), which are gratefully acknowledged. This work was also supported by a King’s College London incentive grant to R.A.S.


  1. Abell LM, Schloss JV (1991) Oxygenase side reactions of acetolactate synthase and other carbanion-forming enzymes. Biochemistry 30:7883–7887CrossRefGoogle Scholar
  2. Adams MA, Jia J (2005) Structural and biochemical evidence for an enzymatic quinone redox cycle in Escherichia coli. Identification of a novel quinol monooxygenase. J Biol Chem 280:8358–8363CrossRefGoogle Scholar
  3. Anderson JM, Cormier MJ (1973) Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem 248:2937–2943Google Scholar
  4. Andrés J, Safont VS, Tapia O (1992) Straining the double bond in 1, 2-dihydroxyethylene. A simple theoretical model for the enediol moiety in Rubisco´s substrate and analogs. Chem Phys Lett 198:515–520CrossRefGoogle Scholar
  5. Bauer I, Max N, Fetzner S, Lingens F (1996) 2, 4-Dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H–3-hydroxy-4-oxoquinaldine 2, 4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H–3-hydroxy-4-oxoquinoline 2, 4-dioxygenase from Pseudomonas putida 33/1. Eur J Biochem 240:576–583CrossRefGoogle Scholar
  6. Bauerly KA, Storms DH, Harris CB, Hajizadeh S, Sun MY, Cheung CP, Satre MA, Fascetti AJ, Tchaparian E, Rucker RB (2006) Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim Biophys Acta 1760:1741–1748Google Scholar
  7. Beermann B, Guddorf J, Boehm K, Albers A, Kolkenbrock S, Fetzner S, Hinz HJ (2007) Stability, unfolding, and structural changes of cofactor-free 1H–3-hydroxy-4-oxoquinaldine 2, 4-dioxygenase. Biochemistry 46:4241–4249CrossRefGoogle Scholar
  8. Boehm K, Guddorf J, Albers A, Kamiyama T, Fetzner S, Hinz HJ (2008) Thermodynamic analysis of denaturant-induced unfolding of HodC69S protein supports a three-state mechanism. Biochemistry 47:7116–7126CrossRefGoogle Scholar
  9. Bruice TC (1984) Oxygen-flavin chemistry. Isr J Chem 24:54–61Google Scholar
  10. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101CrossRefGoogle Scholar
  11. Busi E, Terzuoli L, Basosi R, Porcelli B, Marinello E (2004) EPR spin trapping of a radical intermediate in the urate oxidase reaction. Nucleosides Nucleotides Nucleic Acids 23:1131–1134CrossRefGoogle Scholar
  12. Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR (2008) Function and structure of a prokaryotic formylglycine-generating enzyme. J Biol Chem 283:20117–20125CrossRefGoogle Scholar
  13. Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322CrossRefGoogle Scholar
  14. Chen H, Tseng CC, Hubbard BK, Walsh CT (2001) Glycopeptide antibiotic biosynthesis: enzymatic assembly of the dedicated amino acid monomer (S)-3, 5-dihydroxyphenylglycine. Proc Natl Acad Sci USA 98:14901–14906CrossRefGoogle Scholar
  15. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci USA 101:3587–3590CrossRefGoogle Scholar
  16. Chung JY, Fujii I, Harada S, Sankawa U, Ebizuka Y (2002) Expression, purification, and characterization of AknX anthrone oxygenase, which is involved in aklavinone biosynthesis in Streptomyces galilaeus. J Bacteriol 184:6115–6122CrossRefGoogle Scholar
  17. Colloc’h N, El Hajji M, Bachet B, L´Hermite G, Schiltz M, Prangé T, Castro B, Mornon JP (1997) Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat Struct Biol 4:947–952CrossRefGoogle Scholar
  18. Colloc’h N, Gabison L, Monard G, Altarsha M, Chiadmi M, Marassio G, Santos JSDO, El Hajji M, Castro B, Abraini JH, Prangé T (2008) Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism. Biophys J 95:2415–2422CrossRefGoogle Scholar
  19. Cormier MJ, Lee J, Wampler JE (1975) Bioluminescence: recent advances. Annu Rev Biochem 44:255–272CrossRefGoogle Scholar
  20. Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42:631–639CrossRefGoogle Scholar
  21. Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG (2005) Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell 121:541–552CrossRefGoogle Scholar
  22. Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B (2009) Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease—lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta 1793:710–725CrossRefGoogle Scholar
  23. Dierks T, Schmidt B, Borissenko LV, Peng JK, Preusser A, Mariappan M, von Figura K (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113:435–444CrossRefGoogle Scholar
  24. Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91CrossRefGoogle Scholar
  25. Doll C, Bell AF, Power N, Tonge PJ, Tipton PA (2005) Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site. Biochemistry 44:11440–11446CrossRefGoogle Scholar
  26. Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888CrossRefGoogle Scholar
  27. Fetzner S (2002) Oxygenases without requirement for cofactors or metal ions. Appl Microbiol Biotechnol 60:243–257CrossRefGoogle Scholar
  28. Fetzner S (2007) Cofactor-independent oxygenases go it alone. Nat Chem Biol 3:374–375CrossRefGoogle Scholar
  29. Fielding EN, Widboom PF, Bruner SD (2007) Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC. Biochemistry 46:13994–14000CrossRefGoogle Scholar
  30. Fischer F, Fetzner S (2000) Site-directed mutagenesis of potential catalytic residues in 1H–3-hydroxy-4-oxoquinoline 2, 4-dioxygenase, and hypothesis on the catalytic mechanism of 2, 4-dioxygenolytic ring cleavage. FEMS Microbiol Lett 190:21–27CrossRefGoogle Scholar
  31. Fischer F, Künne S, Fetzner S (1999) Bacterial 2, 4-dioxygenases: new members of the α/β hydrolase-fold superfamily of enzymes functionally related to serine hydrolases. J Bacteriol 181:5725–5733Google Scholar
  32. Fleming SM, Robertson TA, Langley GJ, Bugg TDH (2000) Catalytic mechanism of a C-C hydrolase enzyme: evidence for a gem-diol intermediate, not an acyl enzyme. Biochemistry 39:1522–1531CrossRefGoogle Scholar
  33. Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S (2004) Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H–3-hydroxy-4-oxoquinaldine 2, 4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Biochemistry 43:14485–14499CrossRefGoogle Scholar
  34. Frese MA, Dierks T (2009) Formylglycine aldehyde tag—protein engineering through a novel post-translational modification. ChemBioChem 10:425–427CrossRefGoogle Scholar
  35. Gabison L, Prangé T, Colloc’h N, El Hajji M, Castro B, Chiadmi M (2008) Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: mechanistic implications. BMC Struct Biol 8:32CrossRefGoogle Scholar
  36. Goto T (1968) Chemistry of bioluminescence. Pure Appl Chem 17:421–441CrossRefGoogle Scholar
  37. Hanson SR, Best MD, Wong CH (2004) Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed 43:5736–5763CrossRefGoogle Scholar
  38. Hart RC, Stempel KE, Boyer PD, Cormier MJ (1978) Mechanism of the enzyme-catalyzed bioluminescent oxidation of coelenterate-type luciferin. Biochem Biophys Res Commun 81:980–986CrossRefGoogle Scholar
  39. Hastings JW (2004) Bacterial quorum-sensing signals are inactivated by mammalian cells. Proc Natl Acad Sci USA 101:3993–3994CrossRefGoogle Scholar
  40. Hori K, Wampler JE, Matthews JC, Cormier MJ (1973) Bioluminescence of Renilla reniformis. XIII. Identification of the product excited states during the chemiluminescent and bioluminescent oxidation of Renilla (sea pansy) luciferin and certain of its analogs. Biochemistry 12:4463–4468CrossRefGoogle Scholar
  41. Imhoff RD, Power NP, Borrok MJ, Tipton PA (2003) General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad. Biochemistry 42:4094–4100CrossRefGoogle Scholar
  42. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190CrossRefGoogle Scholar
  43. Juan ECM, Hoque MM, Shimizu S, Hossain MT, Yamamoto T, Imamura S, Suzuki K, Tsunoda M, Amano H, Sekiguchi T, Takénaka A (2008) Structures of Arthrobacter globiformis urate oxidase-ligand complexes. Acta Cryst D64:815–822Google Scholar
  44. Kahn K, Serfozo P, Tipton PA (1997) Identification of the true product of the urate oxidase reaction. J Am Chem Soc 119:5435–5442CrossRefGoogle Scholar
  45. Kahn K, Tipton PA (1997) Kinetic mechanism and cofactor content of soybean root nodule urate oxidase. Biochemistry 36:4731–4738CrossRefGoogle Scholar
  46. Kahn K, Tipton PA (1998) Spectroscopic characterization of intermediates in the urate oxidase reaction. Biochemistry 37:11651–11659CrossRefGoogle Scholar
  47. Kendrew SG, Hopwood DA, Marsh ENG (1997) Identification of a monooxygenase from Streptomyces coelicolorA3(2) involved in biosynthesis of actinorhodin: purification and characterization of the recombinant enzyme. J Bacteriol 179:4305–4310Google Scholar
  48. Kertesz MA (2000) Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175Google Scholar
  49. Killgore J, Smidt C, Duich L, Romero-Chapman N, Tinker D, Reiser K, Melko M, Hyde D, Rucker RB (1989) Nutritional importance of pyrroloquinoline quinone. Science 245:850–852CrossRefGoogle Scholar
  50. Kutzing MK, Firestein BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324:1–7CrossRefGoogle Scholar
  51. Lash TD (2005) The enigma of coproporphyrinogen oxidase: how does this unusual enzyme carry out oxidative decarboxylations to afford vinyl groups? Biooorg Med Chem Lett 15:4506–4509CrossRefGoogle Scholar
  52. Lee DS, Flachsová E, Bodnárová M, Demeler B, Martásek P, Raman CS (2005) Structural basis of hereditary coproporphyria. Proc Natl Acad Sci USA 102:14232–14237CrossRefGoogle Scholar
  53. Leisinger T, Margraff R (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 43:422–442Google Scholar
  54. Li JJ, Bugg TDH (2007) Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the α/β-hydrolase superfamily: a novel mechanism for the serine catalytic triad. Org Biomol Chem 5:507–513CrossRefGoogle Scholar
  55. Loening AM, Fenn TD, Gambhir SS (2007) Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 374:1017–1028CrossRefGoogle Scholar
  56. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Prot Eng Des Sel 19:391–400CrossRefGoogle Scholar
  57. Lombó F, Abdelfattah MS, Braña AF, Salas JA, Rohr H, Méndez C (2009) Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of derivatives with increased antitumor activity. ChemBioChem 10:296–303CrossRefGoogle Scholar
  58. Magnusson OT, RoseFigura JM, Toyama H, Schwarzenbacher R, Klinman JP (2007) Pyrroloquinoline quinone biogenesis: characterization of PqqC and its H84N and H84A active site variants. Biochemistry 46:7174–7186CrossRefGoogle Scholar
  59. Magnusson OT, Toyama H, Saeki M, Rojas A, Reed JC, Liddington RC, Klinman JP, Schwarzenbacher R (2004) Quinone biogenesis: structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. Proc Natl Acad Sci USA 101:7913–7918CrossRefGoogle Scholar
  60. Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269:22459–22462Google Scholar
  61. Matthews JC, Hori K, Cormier MJ (1977) Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry 16:5217–5220CrossRefGoogle Scholar
  62. Max N, Betz A, Facey S, Lingens F, Hauer B, Fetzner S (1999) Cloning, sequence analysis, and expression of the Pseudomonas putida 33/1 1H–3-hydroxy-4-oxoquinoline 2, 4-dioxygenase gene, encoding a carbon monoxide forming dioxygenase. Biochim Biophys Acta 1431:547–552Google Scholar
  63. Oliva M, Safont VS, Andrés J, Tapia O (2001) Transition structures for D-ribulose-1, 5-bisphosphate carboxylase/oxygenase-catalyzed oxygenation chemistry: role of carbamylated lysine in a model magnesium coordination sphere. J Phys Chem A 105:4726–4736CrossRefGoogle Scholar
  64. Ouchi A, Nakano M, Nagaoka SI, Mukai K (2009) Kinetic study of the antioxidant activity of pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in micellar solution. J Agric Food Chem 57:450–456CrossRefGoogle Scholar
  65. Palfey BA, Ballou DP, Massey V (1995) Oxygen activation by flavins and pterins. In: Selverstone Valentine J, Foote CS, Greenberg A, Liebman JF (eds) Active oxygen in biochemistry. Blackie Academic and Professional (Chapman and Hall), London, pp 37–83Google Scholar
  66. Parschat K, Overhage J, Strittmatter AW, Henne A, Gottschalk G, Fetzner S (2007) Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and transcriptional analysis of genes involved in quinaldine degradation. J Bacteriol 189:3855–3867CrossRefGoogle Scholar
  67. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234CrossRefGoogle Scholar
  68. Phillips JD, Whitby FG, Warby CA, Labbe P, Yang C, Pflugrath JW, Ferrara JD, Robinson H, Kushner JP, Hill CP (2004) Crystal structure of the oxygen-dependent coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae. J Biol Chem 279:28960–38968Google Scholar
  69. Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T (2005) Molecular characterization of the human Cα-formylglycine-generating enzyme. J Biol Chem 280:14900–14910CrossRefGoogle Scholar
  70. Prokop Z, Monincová M, Chaloupková R, Klvana M, Nagata Y, Janssen DB, Damborský J (2003) Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem 278:45094–45100CrossRefGoogle Scholar
  71. Pustelny C, Albers A, Büldt-Karentzopoulos K, Parschat K, Chhabra SR, Camara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16:1259–1267CrossRefGoogle Scholar
  72. Rafanan ER Jr, Le L, Zhao L, Decker H, Shen B (2001) Cloning, sequencing, and heterologous expression of the elmGHIJ genes involved in the biosynthesis of the polyketide antibiotic Elloramycin from Streptomyces olivaceus Tü2353. J Nat Prod 64:444–449CrossRefGoogle Scholar
  73. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904CrossRefGoogle Scholar
  74. Rees JF, de Wergifosse B, Noiset O, Dubuisson M, Janssens B, Thompson EM (1998) The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J Exp Biol 201:1211–1221Google Scholar
  75. Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG (2006) A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 103:81–86CrossRefGoogle Scholar
  76. Roeser D, Schmidt B, Preusser-Kunze A, Rudolph MG (2007) Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions. Acta Cryst D63:621–627Google Scholar
  77. Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ, Otto M, Cheung AL, Gresham HD (2004) Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc Natl Acad Sci USA 101:13867–13872CrossRefGoogle Scholar
  78. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130:12240–12241CrossRefGoogle Scholar
  79. Sarma AD, Tipton PA (2000) Evidence for urate hydroperoxide as an intermediate in the urate oxidase reaction. J Am Chem Soc 122:11252–11253CrossRefGoogle Scholar
  80. Sassa S (2006) Modern diagnosis and management of the porphyrias. Br J Haematol 135:281–292CrossRefGoogle Scholar
  81. Schwarzenbacher R, Stenner-Liewen F, Liewen H, Reed JC, Liddington RC (2004) Crystal structure of PqqC from Klebsiella pneumoniae at 2.1 Å resolution. Proteins 56:401–403CrossRefGoogle Scholar
  82. Sciara G, Kendrew SG, Miele AE, Marsh NG, Federici L, Malatesta F, Schimperna G, Savino C, Vallone B (2003) The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J 22:205–215CrossRefGoogle Scholar
  83. Shen B, Hutchinson CR (1993) Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32:6656–6663CrossRefGoogle Scholar
  84. Sherman MR, Saifer MGP, Perez-Ruiz F (2008) PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev 60:59–68CrossRefGoogle Scholar
  85. Silva PJ, Ramos MJ (2008) A comparative density-functional study of the reaction mechanism of the O2-dependent coproporphyrinogen III oxidase. Biooorg Med Chem 16:2726–2733CrossRefGoogle Scholar
  86. Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465Google Scholar
  87. Spurlock BO, Cormier MJ (1975) A fine structure study of the anthocodium in Renilla mülleri. Evidence for the existence of a bioluminescent organelle, the luminelle. J Cell Biol 64:15–28CrossRefGoogle Scholar
  88. Stec B, Stieglitz KA (2008) Not so clear on oxygen. Comment on Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis by Widboom et al. (2007), Nature (London), 447, 342-345. Acta Cryst D64:1000-1002Google Scholar
  89. Steiner RA, Janßen HJ, Roversi P, Oakley AJ, Fetzner S (2010) Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β hydrolase fold. Proc Natl Acad Sci USA 107:657–662CrossRefGoogle Scholar
  90. Stepanyuk GA, Liu ZJ, Vysotski ES, Lee J, Rose JP, Wang BC (2009) Structure based mechanism of the Ca2+-induced release of coelenterazine from the Renilla binding protein. Proteins 74:583–593CrossRefGoogle Scholar
  91. Stephenson JR, Stacey JA, Morgenthaler JB, Friesen JA, Lash TD, Jones MA (2007) Role of aspartate 400, arginine 262, and arginine 401 in the catalytic mechanism of human coproporphyrinogen oxidase. Protein Sci 16:401–410CrossRefGoogle Scholar
  92. Tipton PA (2002) Urate oxidase: single-turnover stopped-flow techniques for detecting two discrete enzyme-bound intermediates. Methods Enzymol 354:310–319CrossRefGoogle Scholar
  93. Tseng CC, Vaillancourt FH, Bruner SD, Walsh CT (2004) DpgC is a metal- and cofactor-free 3, 5-dihydroxyphenylacetyl-CoA 1, 2-dioxygenase in the vancomycin biosynthetic pathway. Chem Biol 11:1195–1203CrossRefGoogle Scholar
  94. Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10CrossRefGoogle Scholar
  95. Wang Y, Scherperel G, Roberts KD, Jones AD, Reid GE, Yan H (2006) A point mutation converts dihydroneopterin aldolase to a cofactor-independent oxygenase. J Am Chem Soc 128:13216–13223CrossRefGoogle Scholar
  96. Ward WW, Cormier MJ (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254:781–788Google Scholar
  97. Widboom PF, Fielding EN, Liu Y, Bruner SD (2007) Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 447:342–345CrossRefGoogle Scholar
  98. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230CrossRefGoogle Scholar
  99. Woo J, Howell MH, von Arnim AG (2008) Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17:725–735CrossRefGoogle Scholar
  100. Wu P, Shui WQ, CarlsonBL HuN, Rabuka D, Lee J, Bertozzi CR (2009) Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci USA 106:3000–3005CrossRefGoogle Scholar
  101. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations