Skip to main content
Log in

Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The process of nitrification has the potential for the in situ bioremediation of halogenated compounds provided a number of challenges can be overcome. In nitrification, the microbial process where ammonia is oxidized to nitrate, ammonia-oxidizing bacteria (AOB) are key players and are capable of carrying out the biodegradation of recalcitrant halogenated compounds. Through industrial uses, halogenated compounds often find their way into wastewater, contaminating the environment and bodies of water that supply drinking water. In the reclamation of wastewater, halogenated compounds can be degraded by AOB but can also be detrimental to the process of nitrification. This minireview considers the ability of AOB to carry out cometabolism of halogenated compounds and the consequent inhibition of nitrification. Possible cometabolism monitoring methods that were derived from current information about AOB genomes are also discussed. AOB expression microarrays have detected mRNA of genes that are expressed at higher levels during stress and are deemed “sentinel” genes. Promoters of selected “sentinel” genes have been cloned and used to drive the expression of gene-reporter constructs. The latter are being tested as early warning biosensors of cometabolism-induced damage in Nitrosomonas europaea with promising results. These and other biosensors may help to preserve the tenuous balance that exists when nitrification occurs in waste streams containing alternative AOB substrates such as halogenated hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeliovich A (1987) Nitrifying bacteria in wastewater reservoirs. Appl Environ Microbiol 53:754–760

    CAS  Google Scholar 

  • Alpaslan Kocamemi B, Cecen F (2007) Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation 18:71–81

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, Speitel GE Jr (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126

    Article  CAS  Google Scholar 

  • Archibald F, Methot M, Young F, Paice MG (2001) A simple system to rapidly monitor activated sludge health and performance. Water Res 35:2543–2553

    Article  CAS  Google Scholar 

  • Arp DJ, Bottomley PJ (2006) Nitrifiers: more than 100 years from isolation to genome sequences. Microbe 1:229–234

    Google Scholar 

  • Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    Article  CAS  Google Scholar 

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81–103

    Article  CAS  Google Scholar 

  • Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255

    Article  CAS  Google Scholar 

  • Arp DJ, Chain PS, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61:503–528

    Article  CAS  Google Scholar 

  • Barney BM, LoBrutto R, Francisco WA (2004) Characterization of a small metal binding protein from Nitrosomonas europaea. Biochemistry 43:11206–11213

    Article  CAS  Google Scholar 

  • Bashyam MD, Hasnain SE (2004) The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect Genet Evol 4:301–308

    Article  CAS  Google Scholar 

  • Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    Article  CAS  Google Scholar 

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31:1406–1408

    Article  CAS  Google Scholar 

  • Bott CB, Love NG (2002) Investigating a mechanistic cause for activated-sludge deflocculation in response to shock loads of toxic electrophilic chemicals. Water Environ Res 74:306–315

    Article  CAS  Google Scholar 

  • Bott CB, Love NG (2004) Implicating the glutathione-gated potassium efflux system as a cause of electrophile-induced activated sludge deflocculation. Appl Environ Microbiol 70:5569–5578

    Article  CAS  Google Scholar 

  • Brandt KK, Pedersen A, Sorensen J (2002) Solid-phase contact assay that uses a lux-marked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil. Appl Environ Microbiol 68:3502–3508

    Article  CAS  Google Scholar 

  • Capestany CA, Tribble GD, Maeda K, Demuth DR, Lamont RJ (2008) Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 190:1436–1446

    Article  CAS  Google Scholar 

  • Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773

    Article  CAS  Google Scholar 

  • Condon C (2006) Shutdown decay of mRNA. Mol Microbiol 61:573–583

    Article  CAS  Google Scholar 

  • Cui R, Chung WJ, Jahng D (2005) A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation. Biosens Bioelectron 20:1788–1795

    Article  CAS  Google Scholar 

  • Duncan AJ, Bott CB, Terlesky KC, Love NG (2000) Detection of GroEL in activated sludge: a model for detection of system stress. Lett Appl Microbiol 30:28–32

    Article  CAS  Google Scholar 

  • Egli K, Langer C, Siegrist HR, Zehnder AJ, Wagner M, van der Meer JR (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 69:3213–3222

    Article  CAS  Google Scholar 

  • El Sheikh AF, Klotz MG (2008) Ammonia-dependent differential regulation of the gene cluster that encodes ammonia monooxygenase in Nitrosococcus oceani ATCC 19707. Environ Microbiol 10:3026–3035

    Article  CAS  Google Scholar 

  • El Sheikh AF, Poret-Peterson AT, Klotz MG (2008) Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 74:312–318

    Article  CAS  Google Scholar 

  • Ely RL, Hyman MR, Arp DJ, Guenther RB, Williamson KJ (1995) A cometabolic kinetics model incoroporating enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnol Bioeng 46:232–245

    Article  CAS  Google Scholar 

  • Ely RL, Williamson KJ, Hyman MR, Arp DJ (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 54:520–534

    Article  CAS  Google Scholar 

  • Ensign SA, Hyman MR, Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175:1971–1980

    CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3:185–254

    Article  CAS  Google Scholar 

  • Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382

    Article  CAS  Google Scholar 

  • Gvakharia BO, Permina EA, Gelfand MS, Bottomley PJ, Sayavedra-Soto LA, Arp DJ (2007) Global transcriptional response of Nitrosomonas europaea to chloroform and chloromethane. Appl Environ Microbiol 73:3440–3445

    Article  CAS  Google Scholar 

  • Gvakharia BO, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2009) Construction of recombinant Nitrosomonas europaea expressing green fluorescent protein in response to co-oxidation of chloroform. Appl Microbiol Biotechnol 82:1179–1185

    Article  CAS  Google Scholar 

  • Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613

    CAS  Google Scholar 

  • Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors—are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    Article  CAS  Google Scholar 

  • Hyman MR, Murton IB, Arp DJ (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microbiol 54:3187–3190

    CAS  Google Scholar 

  • Hyman MR, Ensign SA, Arp DJ, Ludden PW (1989) Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry 28:6821–6826

    Article  CAS  Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ, Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol 61:1480–1487

    CAS  Google Scholar 

  • Iizumi T, Mizumoto M, Nakamura K (1998) A bioluminescence assay using Nitrosomonas europaea for rapid and sensitive detection of nitrification inhibitors. Appl Environ Microbiol 64:3656–3662

    CAS  Google Scholar 

  • Jetten MS, Niftrik LV, Strous M, Kartal B, Keltjens JT, Op den Camp HJ (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 26:1–20

    Article  Google Scholar 

  • Juliette LY, Hyman MR, Arp DJ (1993a) Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol 59:3728–3735

    CAS  Google Scholar 

  • Juliette LY, Hyman MR, Arp DJ (1993b) Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds—thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl Environ Microbiol 59:3718–3727

    CAS  Google Scholar 

  • Kao CM, Prosser J (1999) Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies. J Hazard Mater 69:67–79

    Article  CAS  Google Scholar 

  • Keener WK, Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Appl Environ Microbiol 59:2501–2510

    CAS  Google Scholar 

  • Keener WK, Arp DJ (1994) Transformations of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol 60:1914–1920

    CAS  Google Scholar 

  • Klotz MG, Norton JM (1995) Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene 163:159–160

    Article  CAS  Google Scholar 

  • Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG et al (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 72:6299–6315

    Article  CAS  Google Scholar 

  • Kohlmeier S, Mancuso M, Deepthike U, Tecon R, van der Meer JR, Harms H, Wells M (2008) Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax. Environ Pollut 156:803–808

    Article  CAS  Google Scholar 

  • Love NG, Bott CB (2002) Evaluating the role of microbial stress response mechanisms in causing biological treatment system upset. Water Sci Technol 46:11–18

    CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  Google Scholar 

  • Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PS et al (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    Article  CAS  Google Scholar 

  • Painter HA (1986) Nitrification in the treatment of sewage and waste-waters. In: Prosser JI (ed) Nitrification. IRL, Washington, pp 185–211

    Google Scholar 

  • Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    Article  CAS  Google Scholar 

  • Park S, Ely RL (2008a) Whole-genome transcriptional and physiological responses of Nitrosomonas europaea to cyanide: identification of cyanide stress response genes. Biotechnol Bioeng 102:1645–1653

    Article  Google Scholar 

  • Park S, Ely RL (2008b) Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Appl Environ Microbiol 74:5475–5482

    Article  CAS  Google Scholar 

  • Park S, Ely RL (2008c) Genome-wide transcriptional responses of Nitrosomonas europaea to zinc. Arch Microbiol 189:541–548

    Article  CAS  Google Scholar 

  • Radniecki TS, Dolan ME, Semprini L (2008) Physiological and transcriptional responses of Nitrosomonas europaea to toluene and benzene inhibition. Environ Sci Technol 42:4093–4098

    Article  CAS  Google Scholar 

  • Radniecki TS, Semprini L, Dolan ME (2009a) Expression of merA, trxA, amoA, and hao in continuously cultured Nitrosomonas europaea cells exposed to cadmium sulfate additions. Biotechnol Bioeng 104:1004–1011

    Article  CAS  Google Scholar 

  • Radniecki TS, Semprini L, Dolan ME (2009b) Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions. Biotechnol Bioeng 102:546–553

    Article  CAS  Google Scholar 

  • Rasche ME, Hicks RE, Hyman MR, Arp DJ (1990) Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol 172:5368–5373

    CAS  Google Scholar 

  • Rasche ME, Hyman MR, Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl Environ Microbiol 57:2986–2994

    CAS  Google Scholar 

  • Reeve CA, Bockman AT, Matin A (1984a) Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J Bacteriol 157:758–763

    CAS  Google Scholar 

  • Reeve CA, Amy PS, Matin A (1984b) Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160:1041–1046

    CAS  Google Scholar 

  • Ren S (2004) Assessing wastewater toxicity to activated sludge: recent research and developments. Environ Int 30:1151–1164

    Article  CAS  Google Scholar 

  • Ren S, Frymier PD (2003) Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Water Res 37:1655–1661

    Article  CAS  Google Scholar 

  • Satoh H, Sasaki Y, Nakamura Y, Okabe S, Suzuki T (2005) Use of microelectrodes to investigate the effects of 2-chlorophenol on microbial activities in biofilms. Biotechnol Bioeng 91:133–138

    Article  CAS  Google Scholar 

  • Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, Arp DJ, Norton JM, Klotz MG (1998) Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp, NpAV. FEMS Microbiol Lett 167:81–88

    Article  CAS  Google Scholar 

  • Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    Article  CAS  Google Scholar 

  • Schmidt I, Zart D, Bock E (2001) Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha. Antonie Van Leeuwenhoek 79:311–318

    Article  CAS  Google Scholar 

  • Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS et al (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007

    Article  CAS  Google Scholar 

  • Vannelli T, Logan M, Arciero DM, Hooper AB (1990) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56:1169–1171

    CAS  Google Scholar 

  • Wackett LP (1996) Co-metabolism: is the emperor wearing any clothes? Curr Opin Biotechnol 7:321–325

    Article  CAS  Google Scholar 

  • Wahman DG, Henry AE, Katz LE, Speitel GE Jr (2006) Cometabolism of trihalomethanes by mixed culture nitrifiers. Water Res 40:3349–3358

    Article  CAS  Google Scholar 

  • Wei XM, Yan TF, Hommes NG, Liu XD, Wu LY, McAlvin C et al (2006) Transcript profiles of Nitrosomonas europaea during growth and upon deprivation of ammonia and carbonate. FEMS Microbiol Lett 257:76–83

    Article  CAS  Google Scholar 

  • Yang L, Chang Y, Chou M (1999) Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. J Hazard Mater 69:111–126

    Article  CAS  Google Scholar 

  • Yeager CM, Bottomley PJ, Arp DJ (2001) Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene. Appl Environ Microbiol 67:5384–5391

    Article  CAS  Google Scholar 

  • Zellmeier S, Schumann W, Wiegert T (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaw stress response. Mol Microbiol 61:1569–1582

    Article  CAS  Google Scholar 

  • Zhu MM, Skraly FA, Cameron DC (2001) Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab Eng 3:218–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The National Science Foundation (Biocomplexity grant number 0412711) and the Oregon Agricultural Experimental Station for the funds provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Sayavedra-Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayavedra-Soto, L.A., Gvakharia, B., Bottomley, P.J. et al. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 86, 435–444 (2010). https://doi.org/10.1007/s00253-010-2454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2454-1

Keywords

Navigation