Skip to main content
Log in

A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, we report that three species of Salinispora, S. arenicola, S. tropica, and S. pacifica, require magnesium and calcium, for growth, with S. pacifica having the most stringent growth requirement for these ions. Interaction between these ions in supporting the growth of Salinispora was observed. We also demonstrated that the absolute requirement of sodium to support the growth of Salinispora has not been established as all three species of Salinispora can use either potassium or lithium to replace sodium to support maximum growth. While lithium can replace sodium to support maximum growth of Salinispora, it is more toxic to S. arenicola than S. tropica and S. pacifica, inhibiting the growth of S. arenicola at 189 mM but without effect on the growth of S. tropica and S. pacifica. Using both sodium chloride-based and lithium chloride-based media, we showed that Salinispora has a growth requirement for divalent ions, magnesium and calcium as well as growth requirement for ionic strength (8.29 to 15.2 mS/cm). S. arenicola has a lower growth requirement for ionic strength than S. tropica and S. pacifica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avetisyan AV, Dibrov PA, Semeykina AL, Skulachev VP, Sokolov MV (1991) Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na+-motive respiration. Biochim Biophys Acta 1098:95–104

    Article  CAS  Google Scholar 

  • Bryant MP, Robinson IM, Chu H (1959) Observations on the nutrition of Bacteroides succinogenes – a ruminal cellulolytic bacterium. J Dairy Sci 42:1831–1847

    CAS  Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Caldwell DR, Hudson RF (1974) Sodium, an obligate growth requirement for predominant rumen bacteria. Appl Microbiol 27:549–552

    CAS  Google Scholar 

  • Caldwell DR, Keeney M, Barton JS, Kelley JF (1973) Sodium and other inorganic growth requirement of Bacteroides amylophilus. J Bacteriol 114:782–789

    CAS  Google Scholar 

  • Chauhan D, Hideshima T, Anderson KC (2006) A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Brit J Cancer 95:961–965

    Article  CAS  Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung S-O, Lee HK, Kim S-J (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913

    CAS  Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarbolyases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51:320–340

    CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tonb JF, Dongherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzea RD. Science 269:496–512

    Article  CAS  Google Scholar 

  • Fujiwara-Nagata E, Eguchi M (2004) Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition. FEMS Microbiol Lett 234:163–167

    Article  CAS  Google Scholar 

  • Goldman M, Deibel RH, Niven CF Jr (1963) Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J Bacteriol 85:1017–1021

    CAS  Google Scholar 

  • Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370

    Article  Google Scholar 

  • Hayashi M, Nakayama Y, Unemoto T (1996) Existence of Na+-translocating NADH-quinone reductase in Haemophilus influenzae. FEBS Lett 381:174–176

    Article  CAS  Google Scholar 

  • Hunter SH (1972) Inorganic nutrition. Annu Rev Microbiol 26:313–346

    Article  Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254

    Article  CAS  Google Scholar 

  • Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62

    Article  CAS  Google Scholar 

  • Johnson FH, Harvey EN (1938) Bacterial luminescence, respiration and viability in relation to osmotic pressure and specific salts of sea water. J Cell Comp Physiol 11:213–232

    Article  CAS  Google Scholar 

  • Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282

    Article  CAS  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  Google Scholar 

  • Larsen H (1962) Halophilism. In: Gunsalus IC, Stanier RY (eds) The bacteria: a treatise on structure and function, vol 4. Academic Press, Inc, New York, pp 297–342

    Google Scholar 

  • McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65:445–462

    Article  CAS  Google Scholar 

  • MacLeod RA (1965) The questions of the existence of specific marine bacteria. Bacteriol Rev 29:9–23

    CAS  Google Scholar 

  • MacLeod RA (1968) On the role of inorganic ions in the physiology of marine bacteria. In: Droop MR, Ferguson Wood EJ (eds) Advances in microbiology of the sea, vol 1. Academic Press, London, pp 95–126

    Google Scholar 

  • MacLeod RA (1971) Salinity: bacteria, fungi, and blue-green algae. In: Kinne O (ed) Marine ecology, vol 1. Environmental factors, Part 2. Wiley Interscience, London, pp 689–703

    Google Scholar 

  • MacLeod RA, Matula TI (1961) Solute requirements for preventing lysis of some marine bacteria. Nature 192:1209–1210

    Article  CAS  Google Scholar 

  • MacLeod RA, Matula TI (1962) Nutrition and metabolism of marine bacteria. XI. Some characteristics of the lytic phenomenon. Can J Microbiol 8:883–896

    Article  CAS  Google Scholar 

  • MacLeod RA, Onofrey E (1956) Nutrition and metabolism of marine bacteria. VI. Quantitative requirements for halides, magnesium, calcium and iron. Can J Microbiol 3:753–759

    Article  Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766

    Article  CAS  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 61:3695–3700

    Google Scholar 

  • Nakamura T, Kawasaki S, Unemoto T (1992) Roles of K+ and Na+ in pH homeostatis and growth of marine bacterium Vibrio alginolyticus. J Gen Microbiol 138:1271–1276

    CAS  Google Scholar 

  • Oh S, Kogure K, Ohwada K, Simidu U (1991) Correlation between possession of a respiration-dependent Na+ pump and Na+ requirement for growth of marine bacteria. Appl Environ Microbiol 57:1844–1846

    Google Scholar 

  • Oh D-C, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006) Cyanosporasides A and B, chloro- and cyano-cyclopenta[α] indene glycosides from the marine actinomycete “Salinispora pacifica”. Org Lett 8:1021–1024

    Article  CAS  Google Scholar 

  • Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575

    Article  CAS  Google Scholar 

  • Pratt D (1974) Salt requirements for growth and function of marine bacteria. In: Colwell RR, Morita RY (eds) Effect of the ocean environment on microbial activities. University Park Press, Baltimore, pp 3–15

    Google Scholar 

  • Rürgen H-J, Hentzschel G (1980) Mineral salt requirements of Bacillus globisporus subsp. marinus strains. Arch Microbiol 126:83–86

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction phylogenic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sakazaki RS, Iwanami S, Fukumi H (1963) Studies on the enteropathogenic, facultatively halophilic bacteria, Vibrio parahaemolyticous. I. Morphological, cultural and biochemical properties and its taxonomical position. Jap J Med Sci Biol 16:161–188

    CAS  Google Scholar 

  • Sieburth JM (1979) Sea microbes. Oxford University Press, New York

    Google Scholar 

  • Sistrom WR (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778–785

    CAS  Google Scholar 

  • Tsueng G, Lam KS (2008a) A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184. Appl Microbiol Biotechnol 78:821–826

    Article  CAS  Google Scholar 

  • Tsueng G, Lam KS (2008b) Growth of Salinispora tropica strains CNB440, CNB476, and NPS21184 in nonsaline, low-sodium media. Appl Microbiol Biotechnol 80:873–880

    Article  CAS  Google Scholar 

  • Tsueng G, Teisan S, Lam KS (2008) Defined salt formulations for the growth of Salinispora tropica strain NPS21184 and the production of salinosporamide A (NPI-0052) and related analogs. Appl Microbiol Biotechnol 78:827–832

    Article  CAS  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequence reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    Article  CAS  Google Scholar 

  • Unemoto T, Tsuruoka T, Hayashi M (1973) Role of Na+ and K+ in preventing lysis of a slightly halophilic Vibrio alginolyticus. Can J Microbiol 19:563–571

    Article  CAS  Google Scholar 

  • Unemoto T, Hayashi M, Terao K (1977) Lysis of halophilic Vibrio alginolyticus and Vibrio costicolus induced by chaotropic anions. Biochim Biophys Acta 500:425–431

    CAS  Google Scholar 

  • Unemoto T, Akagawa A, Mizugaki M, Hayashi M (1992) Distribution of Na+-dependent respiration and a respiration-driven electrogenic Na+ pump in moderately halophilic bacteria. J Gen Microbiol 138:1999–2005

    CAS  Google Scholar 

  • Wackett LP, Dodge AG, Ellis LBM (2004) Microbial genomics and the periodic table. Appl Environ Microbiol 70:647–655

    Article  CAS  Google Scholar 

  • Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Sing Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsueng, G., Lam, K.S. A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora . Appl Microbiol Biotechnol 86, 1525–1534 (2010). https://doi.org/10.1007/s00253-009-2424-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2424-7

Keywords

Navigation