Skip to main content
Log in

Current state of coenzyme Q10 production and its applications

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Cite this article

Abstract

Coenzyme Q10 (CoQ10), an obligatory cofactor in the aerobic respiratory electron transfer for energy generation, is formed from the conjugation of a benzoquinone ring with a hydrophobic isoprenoid chain. CoQ10 is now used as a nutritional supplement because of its antioxidant properties and is beneficial in the treatment of several human diseases when administered orally. Bioprocesses have been developed for the commercial production of CoQ10 because of its increased demand, and these bioprocesses depend on microbes that produce high levels of CoQ10 naturally. However, as knowledge of the biosynthetic enzymes and the regulatory mechanisms modulating CoQ10 production increases, approaches arise for the genetic engineering of CoQ10 production in Escherichia coli and Agrobacterium tumefaciens. This review focused on approaches for CoQ10 production, strategies used to engineer CoQ10 production in microbes, and potential applications of CoQ10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aida K, Uchida K, Kawada I, Ito H (1980) Process for the production of coenzyme Q10. US Patent 4,220,719

  • Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of E. coli for production of the carotenoids b-carotene and zeaxanthin. Biotechnol Lett 21:791–795

    Article  CAS  Google Scholar 

  • Alleva R, Tomasetti M, Battino M, Curatola G, Littarru GP, Folkers K (1995) The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc Natl Acad Sci U S A 92:9388–9391

    Article  CAS  Google Scholar 

  • Ashby MN, Kutsunai SY, Ackerman S, Tzagoloff A, Edwards PA (1992) COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. J Biol Chem 267:4128–4136

    CAS  Google Scholar 

  • Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC (1999) Oxidative protein folding is driven by the electron transport system. Cell 98:217–227

    Article  CAS  Google Scholar 

  • Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76:376–390

    Article  CAS  Google Scholar 

  • Battino M, Ferri E, Gorini A, Federico Villa R, Rodriguez Huertas JF, Fiorella P, Genova ML, Lenaz G, Marchetti M (1990) Natural distribution and occurrence of coenzyme Q homologues. Membr Biochem 9:179–190

    Article  CAS  Google Scholar 

  • Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 22:36–52

    Article  CAS  Google Scholar 

  • Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    Article  CAS  Google Scholar 

  • Choi G, Kim Y, Seo J, Ryu Y (2005a) Restricted electron flux increases coenzyme Q10 production in Agrobacterium tumefaciens ATCC4452. Process Biochem 40:3225–3229

    Article  CAS  Google Scholar 

  • Choi JH, Ryu YW, Seo JH (2005b) Biotechnological production and applications of coenzyme Q10. Appl Microbiol Biotechnol 68:9–15

    Article  CAS  Google Scholar 

  • Choi J, Ryu Y, Park Y, Seo J (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144(1):64–69. doi:10.1016/j.jbiotec.2009.04.010

    Article  CAS  Google Scholar 

  • Cluis CP, Burja AM, Martin VJJ (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 25:514–521

    Article  CAS  Google Scholar 

  • Cocheme H, Kelso G, James A, Ross M, Trnka J, Mahendiran T, Asin-Cayuela J, Blaikie F, Manas A, Porteous C (2007) Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion 7:94–102

    Article  Google Scholar 

  • Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598

    CAS  Google Scholar 

  • Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Aspects Med 18(Suppl):S1–S6

    Article  CAS  Google Scholar 

  • Daves GD Jr, Muraca RF, Whittick JS, Friis P, Folkers K (1967) Discovery of ubiquinones-1,-2,-3, and -4 and the nature of biosynthetic isoprenylation. Biochemistry 6:2861–2866

    Article  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    Google Scholar 

  • Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    Article  CAS  Google Scholar 

  • Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, Tamagawa H (1990) Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci U S A 87:8931–8934

    Article  CAS  Google Scholar 

  • Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Doring F (2005) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 37:1208–1218

    Article  CAS  Google Scholar 

  • Grunler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277

    CAS  Google Scholar 

  • Gu SB, Yao JM, Yuan QP, Xue PJ, Zheng ZM, Wang L, Yu ZL (2006) A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation. Appl Microbiol Biotechnol 72:456–461

    Article  CAS  Google Scholar 

  • Ha SJ, Kim SY, Seo JH, Moon HJ, Lee KM, Lee JK (2007a) Controlling the sucrose concentration increases coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl Microbiol Biotechnol 76:109–116

    Article  CAS  Google Scholar 

  • Ha SJ, Kim SY, Seo JH, Oh DK, Lee JK (2007b) Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Appl Microbiol Biotechnol 74:974–980

    Article  CAS  Google Scholar 

  • Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66:808–819

    Article  CAS  Google Scholar 

  • Harker M, Bramley PM (1999) Expression of prokaryotic 1-deoxy-d-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett 448:115–119

    Article  CAS  Google Scholar 

  • Hodgson J, Watts G, Playford D, Burke V, Croft K (2002) Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr 56:1137

    Article  CAS  Google Scholar 

  • Hoppe U, Bergemann J, Diembeck W, Ennen J, Gohla S, Harris I, Jacob J, Kielholz J, Mei W, Pollet D et al (1999) Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors 9:371–378

    Article  CAS  Google Scholar 

  • Ishii N, Senoo-Matsuda N, Miyake K, Yasuda K, Ishii T, Hartman PS, Furukawa S (2004) Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 125:41–46

    Article  CAS  Google Scholar 

  • James AM, Smith RA, Murphy MP (2004) Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 423:47–56

    Article  CAS  Google Scholar 

  • Kaplan P, Ku era I, Dad k V (1993) Effect of oxygen on ubiquinone-10 production by Paracoccus denitrificans. Biotechnol Lett 15:1001–1002

    Article  CAS  Google Scholar 

  • Kawamukai M (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J Biosci Bioeng 94:511–517

    CAS  Google Scholar 

  • Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  Google Scholar 

  • Kim SY, Lee JK, Ahn SJ, Her G, Ryu JH (2002) Fermentation process for preparing coenzyme Q10 by the mutant strain, Agrobacterium tumefaciens BNQ 0605. Korean Patent 10-0458818

  • Kim SJ, Kim MD, Choi JH, Kim SY, Ryu YW, Seo JH (2006) Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli. Appl Microbiol Biotechnol 72:982–985

    Article  CAS  Google Scholar 

  • Lee JK, Her G, Kim SY, Seo JH (2004) Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol Prog 20:51–56

    Article  CAS  Google Scholar 

  • Lee JK, Oh DK, Kim SY (2007) Cloning and characterization of the dxs gene, encoding 1-deoxy-d-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens. J Biotechnol 128:555–566

    Article  CAS  Google Scholar 

  • Lenaz G, Fato R, Di Bernardo S, Jarreta D, Costa A, Genova ML, Parenti Castelli G (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9:87–93

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiologia Plantarum 101:643–652

    Article  CAS  Google Scholar 

  • Lipshutz BH, Mollard P, Pfeiffer SS, Chrisman W (2002) A short, highly efficient synthesis of coenzyme Q(10). J Am Chem Soc 124:14282–14283

    Article  CAS  Google Scholar 

  • Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A 95:2105–2110

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  • Martin SF, Buron I, Espinosa JC, Castilla J, Villalba JM, Torres JM (2007) Coenzyme Q and protein/lipid oxidation in a BSE-infected transgenic mouse model. Free Radic Biol Med 42:1723–1729

    Article  CAS  Google Scholar 

  • Matsuda H, Kawamukai M, Yajima K, Ikenaka Y (2003) Process for producing coenzyme Q10. Patent EP 1 354 957 A1

  • Matsuda H, Kawamukai M, Kazuyoshi Y (2004a) Process for producing coenzyme Q10. Kanegafuchi Chemical Industry, European Patent EP1391515

  • Matsuda H, Kawamukai M, Kazuyoshi Y (2004b) Process for producing coenzyme Q10. Kaneka Corporation, Osaka, US Patent 6,762,037

  • Matthews PD, Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53:396–400

    Article  CAS  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95:8892–8897

    Article  CAS  Google Scholar 

  • Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51

    CAS  Google Scholar 

  • Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett 203:131–139

    Article  CAS  Google Scholar 

  • Melzer M, Heide L (1994) Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. Biochim Biophys Acta 1212:93–102

    CAS  Google Scholar 

  • Mortensen SA, Leth A, Agner E, Rohde M (1997) Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med 18(Suppl):S137–S144

    Article  CAS  Google Scholar 

  • Murphy MP (1997) Targeting bioactive compounds to mitochondria. Trends Biotechnol 15:326–330

    Article  CAS  Google Scholar 

  • Murphy MP (2001) Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 1:753–764

    Article  CAS  Google Scholar 

  • Murphy MP, Smith RA (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 41:235–250

    Article  CAS  Google Scholar 

  • Natori Y, Nagasaki T, Kobayashi A, Fukawa H (1978) Production of coenzyme Q10 by Pseudomonas N842. Agric Biol Chem 42:1799–1800

    CAS  Google Scholar 

  • Negishi E, Liou S, Xu C, Huo S (2002) A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q10. Org Lett 4:261–264

    Article  CAS  Google Scholar 

  • Nichols BP, Green JM (1992) Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J Bacteriol 174:5309–5316

    CAS  Google Scholar 

  • Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T, Nakagawa T, Kawamukai M, Matsuda H (1996) Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim Biophys Acta 1302:217–223

    Google Scholar 

  • Okada K, Kainou T, Matsuda H, Kawamukai M (1998a) Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett 431:241–244

    Article  CAS  Google Scholar 

  • Okada K, Kainou T, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998b) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur J Biochem 255:52–59

    Article  CAS  Google Scholar 

  • Orihara N, Kuzuyama T, Takahashi S, Furihata K, Seto H (1998) Studies on the biosynthesis of terpenoid compounds produced by actinomycetes. 3. Biosynthesis of the isoprenoid side chain of novobiocin via the non-mevalonate pathway in Streptomyces niveus. J Antibiot (Tokyo) 51:676–678

    CAS  Google Scholar 

  • Overvad K, Diamant B, Holm L, Holmer G, Mortensen SA, Stender S (1999) Coenzyme Q10 in health and disease. Eur J Clin Nutr 53:764–770

    Article  CAS  Google Scholar 

  • Park YC, Kim SJ, Choi JH, Lee WH, Park KM, Kawamukai M, Ryu YW, Seo JH (2005) Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl Microbiol Biotechnol 67:192–196

    Article  CAS  Google Scholar 

  • Poon WW, Do TQ, Marbois BN, Clarke CF (1997) Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeast coq mutants. Mol Aspects Med 18(Suppl):S121–S127

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahms H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Sakato K, Tanaka H, Shibata S, Kuratsu Y (1992) Agitation–aeration studies on coenzyme Q10 production using Rhodopseudomonas spheroides. Biotechnol Appl Biochem 16:19–22

    CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J et al (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  Google Scholar 

  • Shults CW, Flint Beal M, Song D, Fontaine D (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp Neurol 188:491–494

    Article  CAS  Google Scholar 

  • Smith RA, Kelso GF, Blaikie FH, Porteous CM, Ledgerwood EC, Hughes G, James AM, Ross MF, Asin-Cayuela J, Cocheme HM et al (2003) Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences. Biochem Soc Trans 31:1295–1299

    Article  CAS  Google Scholar 

  • Smith RAJ, Kelso G, James AM, Murphy MP (2004) Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol 382:45–67

    Article  CAS  Google Scholar 

  • Soballe B, Poole RK (2000) Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146(Pt 4):787–796

    CAS  Google Scholar 

  • Suzuki K, Okada K, Kamiya Y, Zhu XF, Nakagawa T, Kawamukai M, Matsuda H (1997) Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J Biochem 121:496–505

    CAS  Google Scholar 

  • Tabata K, Hashimoto SI (2004) Production of mevalonate by a metabolically-engineered E. coli. Biotechnol Lett 26:1487–1491

    Article  CAS  Google Scholar 

  • Takahashi S, Nishino T, Koyama T (2003) Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli. Biochem Eng J 16:183–190

    Article  CAS  Google Scholar 

  • Thomas SR, Leichtweis SB, Pettersson K, Croft KD, Mori TA, Brown AJ, Stocker R (2001) Dietary cosupplementation with vitamin E and coenzyme Q(10) inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol 21:585–593

    CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199

    Article  CAS  Google Scholar 

  • Urakami T, Hori-Okubo M (1988) Production of isoprenoid compounds in the facultative methylotroph Protomonas extorquens. J Ferment Technol 66:323–332

    Article  CAS  Google Scholar 

  • Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V (2002) Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia 45:420–426

    Article  CAS  Google Scholar 

  • Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Shin YC, Keasling JD, Kim SW (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032

    Article  CAS  Google Scholar 

  • Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Seon-Won Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  Google Scholar 

  • Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44:19–26

    Article  CAS  Google Scholar 

  • Yoshida Y, Hayakawa M, Habuchi Y, Niki E (2006) Evaluation of the dietary effects of coenzyme Q in vivo by the oxidative stress marker, hydroxyoctadecadienoic acid and its stereoisomer ratio. Biochim Biophys Acta 1760:1558–1568

    CAS  Google Scholar 

  • Yoshiyuki K, Minoru S, Hiroshi H, Keiichi I (1984) Aeration–agitation effect on coenzyme Q10 production by Agrobacterium species. J Ferment Technol 62:305–308

    Google Scholar 

  • Zahiri HS, Yoon SH, Keasling JD, Lee SH, Won Kim S, Yoon SC, Shin YC (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416

    Article  CAS  Google Scholar 

  • Zhong W, Fang J, Liu H, Wang X (2009) Enhanced production of CoQ10 by newly isolated Sphingomonas sp. ZUTEO3 with a coupled fermentation-extraction process. J Ind Microbiol Biotechnol 36:687–693

    Article  CAS  Google Scholar 

  • Zhu X, Yuasa M, Okada K, Suzuki K, Nakagawa T, Kawamukai M, Matsuda H (1995) Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis. J Ferment Bioeng 79:493–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Kul Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeya, M., Moon, HJ., Lee, JL. et al. Current state of coenzyme Q10 production and its applications. Appl Microbiol Biotechnol 85, 1653–1663 (2010). https://doi.org/10.1007/s00253-009-2380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2380-2

Keywords

Navigation