Skip to main content

Advertisement

Log in

Scaling up microbial fuel cells and other bioelectrochemical systems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m3 (reactor volume) and to 6.9 W/m2 (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham TH, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  Google Scholar 

  • Aelterman P, Versichele M, Genettello E, Verbeken K, Verstraete W (2009) Microbial fuel cells operated with iron-chelated air cathodes. Electrochim Acta 54:5754–5760

    Article  CAS  Google Scholar 

  • Allen MJ (1972) In: Norris JR, Ribbon DW (eds) Methods microbial. Academic, NY, pp 247–283

    Google Scholar 

  • Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7(9):900–904

    Article  CAS  Google Scholar 

  • Borole AP, Hamilton CY, Vishnivetskaya TA, Leak D, Andras C, Morrell-Falvey J, Keller M, Davison B (2009) Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 191:520–527

    Article  CAS  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42(9):3401–3406

    Article  CAS  Google Scholar 

  • Call D, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells (MECs). Environ Sci Technol 43(6):2179–2183

    Article  CAS  Google Scholar 

  • Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496

    Article  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrons into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360

    Article  CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41(21):7564–7569

    Article  CAS  Google Scholar 

  • Deng Q, Li X, Zuo JE, Logan BE, Ling A (2009) Power generation using an activated carbon fiber felt (ACFF) cathode in an upflow microbial fuel cell. J Power Sources 195(4):1130–1135

    Article  Google Scholar 

  • Dumas C, Mollica A, F'eron D, Basseguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473

    Article  CAS  Google Scholar 

  • Fan Y, Hu H, Liu H (2007a) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354

    Article  CAS  Google Scholar 

  • Fan Y, Hu H, Liu H (2007b) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41(23):8154–8158

    Article  CAS  Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42(21):8101–8107

    Article  CAS  Google Scholar 

  • Feng Y, Yang Q, Wang X, Logan BE (2009) Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J Power Sources. doi:10.1016/j.jpowsour.2009.10.030

  • Harnisch F, Sievers G, Schroder U (2009) Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl Catal B Environ 89:455–458

    Article  CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19–20):2009–2015

    Article  CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalyst. Int J Hydrogen Energy 34:8535–8542

    Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39(8):1007–1012

    Article  CAS  Google Scholar 

  • Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47:31–37

    Article  CAS  Google Scholar 

  • Kim BH, Park DH, Shin PK, Chang IS, Kim HJ (1999) Mediator-less biofuel cell. US Patent 5976719

  • Kim JR, Cheng S, Oh S-E, Logan BE (2007) Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41(3):1004–1009

    Article  CAS  Google Scholar 

  • Li Z, Yao L, Kong L, Liu H (2008) Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour Technol 99:1650–1655

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    Article  CAS  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  CAS  Google Scholar 

  • Liu JL, Lowy DA, Baumann RG, Tender LM (2007) Influence of anode pretreatment on its microbial colonization. J Appl Microbiol 102:177–183

    Article  CAS  Google Scholar 

  • Liu H, Cheng S, Huang L, Logan BE (2008) Scale up of a single-chamber microbial fuel cell through optimization of the anode to cathode area ratio. J Power Sources 179:274–279

    Article  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381

    Article  CAS  Google Scholar 

  • Logan BE, Aelterman P, Hamelers B, Rozendal R, Schröder U, Keller J, Freguiac S, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  • Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640

    Article  CAS  Google Scholar 

  • Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225–231

    Article  CAS  Google Scholar 

  • Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10(10):2505–2514

    Article  CAS  Google Scholar 

  • Nielsen K, Reimers CE, Stecher HAI (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41(22):7895–7900

    Article  CAS  Google Scholar 

  • Oh S-E, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17

    Article  CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond Ser B 84:260–276

    Article  Google Scholar 

  • Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 μL microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9:3076–3081

    Article  CAS  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535

    Article  CAS  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694

    Article  CAS  Google Scholar 

  • Rosenbaum M, Zhao F, Schröder U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high performance noble-metal-free microbial fuel cell. Angew Chem (Int Ed) 45(40):6658–6661

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006a) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31(12):1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVV, Buisman CJN (2006b) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40(17):5206–5211

    Article  CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755

    Article  CAS  Google Scholar 

  • Scott K, Murano C, Rimbu G (2007) A tubular microbial fuel cell. J Appl Electrochem 37:1063–1068

    Article  CAS  Google Scholar 

  • Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190(2):271–278

    Article  CAS  Google Scholar 

  • Tender LM, Gray SA, Grovemanb E, Lowy DA, Kauffmand P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575

    Article  CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024

    Article  CAS  Google Scholar 

  • Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874

    Article  CAS  Google Scholar 

  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151

    Article  CAS  Google Scholar 

  • You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    Article  CAS  Google Scholar 

  • Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE (2009a) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11:2177–2179

    Article  CAS  Google Scholar 

  • Zhang X, Cheng S, Huang X, Logan BE (2009b) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens Bioelectron. doi:10.1016/j.bios.2009.11.018

  • Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009c) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43(21):8456–8461

    Article  CAS  Google Scholar 

  • Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  CAS  Google Scholar 

  • Zuo Y, Cheng S, Logan BE (2008a) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42(18):6967–6972

    Article  CAS  Google Scholar 

  • Zuo Y, Xing D, Regan JM, Logan BE (2008b) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This author is grateful for funding by King Abdullah University of Science and Technology (KAUST; Award KUS-I1-003-13), the National Science Foundation (CBET-0730359 and CBET-0803137), the National Renewable Energy Laboratory (RFH-7-77623-01), and the Paul L. Bush award administered by the Water Environment Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Logan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85, 1665–1671 (2010). https://doi.org/10.1007/s00253-009-2378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2378-9

Keywords

Navigation