Skip to main content
Log in

Inhibitory effect of hydroxycinnamic acids on Dekkera spp.

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Simple phenolic components of wine, hydroxycinnamic acids (HCAs) are known to have antimicrobial properties. This study sought to determine the potential of ferulic acid as an antifungal agent for the control of Dekkera. Growth was inhibited by all HCAs examined in this study, with ferulic acid being the most potent at all concentrations. In the presence of ethanol, the inhibitory effects of ferulic acid were amplified. Scanning electron microscopy images reveal cellular damage upon exposure to ferulic acid. Thus, manipulation of ferulic acid concentrations could be of industrial significance for control of Dekkera and may be the basis for differences in susceptibility of wines to Dekkera spoilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Techniques and protocols #3 yeast DNA isolations. In: Dickerson MM (ed) Methods in genetics. Cold Spring Harbour Laboratory Press, New York, pp 107–108

    Google Scholar 

  • Auw JM, Blanco V, O’Keefe SF, Sims CA (1996) Effect of processing on the phenolics and color of Cabernet Sauvignon, Chambourcin, and Noble wines and juices. Am J Enol Vitic 47:279–286. doi:10458.35400006414677.0060

    CAS  Google Scholar 

  • Avar P, Nikfardjam MSP, Kunsági-Máté S, Montskó G, Szabó Z, Böddi K, Ohmacht R, Márk L (2007) Investigation of phenolic components of Hungarian wines. Int J Mol Sci 8:1028–1038. doi:10.3390/18101028

    Article  CAS  Google Scholar 

  • Baranowski JD, Nagel CW (1983) Properties of alkyl hydroxycinnamates and effects on Pseudomonas fluorescens. Appl Environ Microbiol 45:218–222. doi:0099-2240/83/010218-05502.00/0

    CAS  Google Scholar 

  • Baranowski JD, Davidson PM, Nagel CW, Branen AL (1980) Inhibition of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. J Food Sci 45:592–594. doi:10.1111/j.1365-2621tb04107

    Article  CAS  Google Scholar 

  • Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2007) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207. doi:10.1016/jifoodmicro.2007.11.020

    Article  Google Scholar 

  • Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A (2004) Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol 38:454–458. doi:10.1111/j.1472-765x2004.01511x

    Article  CAS  Google Scholar 

  • Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94:167–174. doi:7415,34500011082402.0020

    Article  CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178. doi:10.1002/jsfa.2740600205

    Article  CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN, Lavigne V (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J Sci Food Agric 62:191–202. doi:2634,34500003652395.0120

    Article  CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am J Enol Vitic 46:463–468. doi:10458.35400005526851.0070

    CAS  Google Scholar 

  • Davidson PM, Branen AL (1993) Antimicrobials in foods. Marcel Dekker, New York

    Google Scholar 

  • du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98:862–871. doi:741535400012689452.0090

    Article  Google Scholar 

  • Edlin DAN, Narbad A, Dickinson JR, Lloyd D (1995) The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol Lett 125:311–315. doi:17567A,35400005805388.0280

    Article  CAS  Google Scholar 

  • García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Pueyo E, Martín-Álvarez PJ, Moreno-Arribas MV (2008) Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 19:835–841. doi:101016/jfoodcont.2007.08.018

    Article  Google Scholar 

  • Grbin PR, Henschke PA (2000) Mousy off-flavour production in grape juice and wine by Dekkera and Brettanomyces yeast. Aust J Grape Wine Res 6:255–262. doi:10.1111/j1755-0238200tb00186.x

    Article  CAS  Google Scholar 

  • Grbin PR, Herderich M, Markides A, Lee T, Henschke P (2007) The role of lysine amino nitrogen in the biosynthesis of mousy off-flavor compounds by Dekkera anomala. J Agric Food Chem 55:10872–10879. doi:10.1021/jf071243e

    Article  CAS  Google Scholar 

  • Guillamón JM, Sabaté J, Barrio E, Cano J, Qeurol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392. doi:10.1007/s002030050587

    Article  Google Scholar 

  • Harris V, Ford CM, Jiranek V, Grbin PR (2008) Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media. Appl Microbiol Biotechnol 78:997–1006. doi:10.1007/s00253-007-1328-7

    Article  CAS  Google Scholar 

  • Harris V, Ford CM, Jiranek V, Grbin PR (2009) Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast. Appl Microbiol Biotechnol 81:1117–1127. doi:10.1007/s00253-008-1708-7

    Article  CAS  Google Scholar 

  • Heresztyn T (1986) Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146:96–98. doi:10.1007/bf00690165

    Article  CAS  Google Scholar 

  • Kalathenos P, Sutherland JP, Roberts TA (1995) Resistance of some wine spoilage yeasts to combinations of ethanol and acids present in wine. J Appl Bacteriol 78:245–250. doi:7415,35400005562518.0060

    CAS  Google Scholar 

  • Kallithraka S, Tsoutsouras E, Tzourou E, Lanaridis P (2006) Principal phenolic compounds in Greek red wines. Food Chem 99:784–793. doi:10.1016/jfoodchem.2005.07.059

    Article  CAS  Google Scholar 

  • Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50. doi:10.1016/s0168-1605(03)00246-0

    Article  CAS  Google Scholar 

  • Macheix JJ, Fleuriet A, Billiot J (1990) Fruit phenolics. CRC, Boca Raton

    Google Scholar 

  • Maga JA (1978) Simple phenol and phenolic compounds in food flavor. Crit Rev Food Sci 10:323–372

    Article  CAS  Google Scholar 

  • Morata A, Gomez-Cordoves MC, Calderon F, Suarez JA (2006) Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. Int J Food Microbiol 106:123–129. doi:10.1016/jifoodmicro.2005.05.019

    Article  CAS  Google Scholar 

  • Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S (2002) Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 22:2711–2717. doi:19426,35400010714237.0270

    CAS  Google Scholar 

  • Oszmianski J, Romeyer FM, Sapis JC, Macheix JJ (1986) Grape seed phenolics: extraction as affected by some conditions occurring during wine processing. Am J Enol Vitic 37:7–12

    CAS  Google Scholar 

  • Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. doi:10.1002/jsfa1873

    Article  CAS  Google Scholar 

  • Ravn H, Andary C, Kovacs G, Moelgaard P (1989) Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem Syst Ecol 17:175–184. doi:10.1016/0305-1978(89)90076-8

    Article  CAS  Google Scholar 

  • Reguant C, Bordons A, Arola L, Rozes N (2000) Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J Appl Microbiol 88:1065–1071. doi:10.1046/j.1365-2672.2000.01075.x

    Article  CAS  Google Scholar 

  • Rodrigues F, Goncalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureiro V (2001) Development and use of a new medium to detect yeasts of the genera Dekkera /Brettanomyces. J Appl Microbiol 90:588–599. doi:10.1046/j1365-2672.2001.01275.x

    Article  CAS  Google Scholar 

  • Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264. 7 cells. Med Inflamm 8:173–175

    Article  CAS  Google Scholar 

  • Silva P, Cardoso H, Geros H (2004) Studies on the wine spoilage capacity of Brettanomyces/Dekkera spp. Am J Enol Vitic 55:65–72

    CAS  Google Scholar 

  • Smid EJ, Gorris LGM (1999) Natural antimicrobials for food preservation. In: Rahman MS (ed) Handbook of food preservation. CRC, New York, pp 285–308

    Google Scholar 

  • Soleas GJ, Dam J, Carey M, Goldberg DM (1997) Toward the fingerprinting of wines: cultivar-related patterns of polyphenolic constituents in Ontario wines. J Agric Food Chem 45:3871–3880. doi:10.1021/jf970183h

    Article  CAS  Google Scholar 

  • Somers TC, Verette E, Pocock KF (1987) Hydroxycinnamate esters of Vitis vinifera: changes during white vinification, effects of exogenous enzymic hydrolysis. J Sci Food Agric 40:67–78. doi:10.1002/jsfa.2740400109

    Article  CAS  Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin BioChem Nutr 40:92–100. doi:103164/jcbn.40.92

    Article  CAS  Google Scholar 

  • Stead D (1993) The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria. J Appl Bacteriol 75:135–141. doi:10.1111/j.1365-2672.1993.tb02758.x

    CAS  Google Scholar 

  • Stead D (1995) The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. J Appl Bacteriol 78:82–87. doi:10.1111/j.1365-2672.1995tb01677.x

    CAS  Google Scholar 

  • van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66:5322–5328. doi:719535400009349011.0350

    Article  Google Scholar 

  • van der Walt JP, van Kerken AE (1959) The wine yeasts of the Cape. II. The occurrence of Brettanomyces intermedius and Brettanomyces schanderlii in South African table wines. Antonie Leeuwenhoek 25:145–151. doi:10.1007/bf2538426

    Article  Google Scholar 

  • Van Sumere CF, Cottenie J, De Greef J, Kint J (1971) Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics. Recent Adv Phytochem 4:165–221

    Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554. doi:7332.35400011797959.0190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr Chris Curtin for supplying the yeast AWRI 1499. This project was supported by Australia’s grapegrowers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The authors also gratefully acknowledge Adelaide Microscopy, in particular Ms Lyn Waterhouse for assistance with SEM examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, V., Jiranek, V., Ford, C.M. et al. Inhibitory effect of hydroxycinnamic acids on Dekkera spp.. Appl Microbiol Biotechnol 86, 721–729 (2010). https://doi.org/10.1007/s00253-009-2352-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2352-6

Keywords

Navigation