Skip to main content
Log in

Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During a general survey of the acetaldehyde-producing properties of commercially available wine yeast strains, we discovered that, although final acetaldehyde production cannot be used as a discriminating factor between yeast strains, initial specific acetaldehyde production rates were of highly interest for classifying yeast strains. This parameter is very closely related to the growth- and fermentation-lag phase durations. We also found that this acetaldehyde early production occurs with very different extent between commercial active dry yeast strains during the rehydration phase and could partially explain the known variable resistance of yeast strains to sulfites. Acetaldehyde production appeared, therefore, as very precocious, strain-dependent, and biomass-independent character. These various findings suggest that this new intrinsic characteristic of industrial fermenting yeast may be likely considered as an early marker of the general fermenting activity of industrial fermenting yeasts. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amerine MA, Ough CS (1964) Studies with controlled fermentation. VIII. Factors affecting aldehyde accumulation. Am J Enol Vitic 15:23–33

    CAS  Google Scholar 

  • Barber AR, Pamment NB, Henningsson HM (2002a) Acceleration of high gravity yeast fermentations by acetaldehyde addition. Biotechnol Lett 24:891–895

    Article  CAS  Google Scholar 

  • Barber AR, Vriesekoop F, Pamment NB (2002b) Effects of acetaldehyde on Saccharomyces cerevisiae exposed to a range of chemical and environmental stresses. Enz Microb Tech 30:240–250

    Article  CAS  Google Scholar 

  • Beech FW, Burroughs LF, Timberlake CF, Whiting GC (1979) Progrès récents sur l’aspect chimique et antimicrobienne de l’anhydride sulfureux. Bull OIV 52:1001–1022

    CAS  Google Scholar 

  • Beker MJ, Rapoport AI (1987) Conservation of yeasts by rehydration. Adv Biochem Eng Biotechnol 35:127–171

    Google Scholar 

  • Beker MJ, Blumbergs JE, Ventina EJ, Rapoport AI (1984) Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 19:347–352

    Article  Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990) Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic 40:319–324

    Google Scholar 

  • Casalone E, Collela CM, Daly S, Gallori E, Moriani L, Polsinelli M (1992) Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet 22:435–440

    Article  CAS  Google Scholar 

  • Cavalieri D, Barberio C, Casalone E, Pinzauti F, Sebastiani F, Mortimer RK, Polsinelli M (1998) Genetic and molecular diversity in S. cerevisiae natural populations. Food Technol Biotechnol 36:45–50

    CAS  Google Scholar 

  • Cheraiti N, Guezenec S, Salmon JM (2005) Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Appl Environ Microbiol 71:255–260

    Article  CAS  Google Scholar 

  • Cheraiti N, Sauvage FX, Salmon JM (2007) Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77:1093–1109

    Article  Google Scholar 

  • Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3:129. doi:10.1038/msb4100170

    Article  Google Scholar 

  • Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. J Appl Microbiol 85:779–789

    Article  CAS  Google Scholar 

  • Farris GA, Fatichenti F, Deiana P, Madau G (1983) Functional selection of low sulfur dioxide-acceptor producers among 30 Saccharomyces cerevisiae strains. J Ferm Technol 61:201–204

    CAS  Google Scholar 

  • Fornachon JCM (1953) The accumulation of acetaldehyde by suspensions of yeasts. Appl Microbiol 6:222–233

    CAS  Google Scholar 

  • Hansen J, Kielland-Brandt MC (1996) Inactivation of MET10 in brewer’s yeast specifically increase SO2 formation during beer production. Nature Biotechnol 15:1587–1591

    Article  Google Scholar 

  • Hennig K, Burkhardt R (1960) Detection of phenolic compounds and hydroxy acids in grapes, wines, and similar beverages. Am J Enol Vitic 11:64–79

    Google Scholar 

  • Ingram M (1948) Germicidal effects of free and combines sulfur dioxide. J Soc Chem Ind 67:18–21

    Article  CAS  Google Scholar 

  • Liu SQ, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  • Mohammed I (2007) Gene expression profile of ethanol-stressed yeast in the presence of acetaldehyde. PhD thesis, Victoria University, Melbourne, Australia

  • Park H, Hwang YS (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46:542–548

    Article  CAS  Google Scholar 

  • Park H, Lopez NI, Bakalinsky AT (1999) Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet 36:339–344

    Article  CAS  Google Scholar 

  • Peynaud E, Lafon-Lafourcade S (1966) Facteurs de la formation des acides pyruvique et alpha-cétoglutarique au cours de la fermentation alcoolique: conséquences pratiques sur les combinaisons sulfitiques des vins. Ind Aliment Agr 83:119–126

    CAS  Google Scholar 

  • Rapoport AI (1973) Rejection of areas of damaged cytoplasm by microorganisms in a state of anabiosis. Microbiology 42:317–318

    Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  Google Scholar 

  • Ribéreau-Gayon J, Peynaud E, Lafon M (1956a) Investigations on the origin of secondary products of alcoholic fermentation. Am J Enol Vitic 7:53–61

    Google Scholar 

  • Ribéreau-Gayon J, Peynaud E, Lafon M (1956b) Investigations on the origin of secondary products of alcoholic fermentation. Part II. Fermentations deviated by addition of fatty acids. Am J Enol Vitic 7:112–118

    Google Scholar 

  • Romano P, Suzzi G, Turbanti L, Polsinelli M (1994) Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 118:213–218

    Article  CAS  Google Scholar 

  • Rosenfeld E, Beauvoit B, Blondin B, Salmon JM (2003) Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics. Appl Environ Microbiol 69:113–121

    Article  CAS  Google Scholar 

  • Reyes FGR, Wrolstad RE, Cornwell CJ (1982) Comparison of enzymic, gas-liquid chromatographic, and high performance liquid chromatographic methods for determining sugars and organic acids in strawberries at three stages of maturity. J Assoc Off Anal Chem 65:126–131

    CAS  Google Scholar 

  • Sablayrolles JM, Barre P, Grenier P (1987) Design of a laboratory automatic system for studying alcoholic fermentations in anisothermal enological conditions. Biotechnol Tech 1:181–184

    Article  CAS  Google Scholar 

  • Salmon JM (1987) Determination of malic enzyme activity on permeabilized cells of Saccharomyces cerevisiae using a dissolved CO2 probe. Biotechnol Tech 1:7–10

    Article  CAS  Google Scholar 

  • Satoshi Y, Jun I, Toshiko M, Rie O, Mao S, Takeo I, Tatsuji I, Satoru M, Masaru T, Tomoyoshi S, Hiroyuki Y (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796

    Article  Google Scholar 

  • Soubeyrand V, Luparia V, Williams P, Doco T, Vernhet A, Ortiz-Julien A, Salmon JM (2005) Formation of micella containing solubilized sterols during rehydration of active dry yeasts improves their fermenting capacity. J Agric Food Chem 53:8025–8032

    Article  CAS  Google Scholar 

  • Stanley GA, Pamment NB (1993) Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae. Biotechnol Bioeng 42:24–29

    Article  CAS  Google Scholar 

  • Stanley GA, Douglas NG, Every EJ, Tzanatos T, Pamment NB (1993) Inhibition and stimulation of yeast growth by acetaldehyde. Biotechnol Lett 15:1199–1204

    Article  CAS  Google Scholar 

  • Stanley GA, Hobley TJ, Pamment NB (1997) Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 53:71–78

    Article  CAS  Google Scholar 

  • Stratford M, Morgans P, Rose AH (1987) Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. J Gen Microbiol 133:2173–2179

    CAS  Google Scholar 

  • Vriesekoop F, Barber AR, Pamment NB (2007) Acetaldehyde mediates growth stimulation of ethanol-stressed Saccharomyces cerevisiae: evidence of a redox-driven mechanism. Biotechnol Lett 29:1099–1103

    Article  CAS  Google Scholar 

  • Villanova M, Martinez C, Siero C, Masneuf I, Dubourdieu D (2003) Ecology of Saccharomyces cerevisiae fermentations at a Rias Baixas appellation contrôlée winery. J Inst Brew 109:305–308

    Google Scholar 

  • Walker-Caprioglio HM, Parks LW (1987) Auto conditioning factor relieves ethanol-induced growth inhibition of Saccharomyces cerevisiae. Appl Environ Microbiol 53:33–35

    CAS  Google Scholar 

  • Weeks C (1969) Production of sulfur dioxide-binding compounds and of sulfur dioxide by two Saccharomyces yeasts. Am J Enol Vitic 20:32–39

    CAS  Google Scholar 

Download references

Acknowledgments

N. Cheraiti was the recipient of a grant from the French Ministère de la Recherche et de l’Enseignement Supérieur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Salmon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheraiti, N., Guezenec, S. & Salmon, JM. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character. Appl Microbiol Biotechnol 86, 693–700 (2010). https://doi.org/10.1007/s00253-009-2337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2337-5

Keywords

Navigation