Skip to main content
Log in

Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular biology methods have elucidated pathogenic processes in several fungal biocontrol agents including two of the most commonly applied entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. In this review, we describe how a combination of molecular techniques has: (1) identified and characterized genes involved in infection; (2) manipulated the genes of the pathogen to improve biocontrol performance; and (3) allowed expression of a neurotoxin from the scorpion Androctonus australis. The complete sequencing of four exemplar species of entomopathogenic fungi including B. bassiana and M. anisopliae will be completed in 2010. Coverage of these genomes will help determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. Such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies to be used for different ecosystems and avoid the possibility of the host developing resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  CAS  Google Scholar 

  • Bagga S, Hu G, Screen SE, St. Leger RJ (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169

    Article  CAS  Google Scholar 

  • Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB (2005) Fungal pathogen reduces potential for malaria transmission. Science 308:1638–1641

    Article  CAS  Google Scholar 

  • Cho EM, Liu L, Farmerie W, Keyhani NO (2006a) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152:2843–2854

    Article  CAS  Google Scholar 

  • Cho EM, Boucias D, Keyhani NO (2006b) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152:2855–2864

    Article  CAS  Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447

    Article  CAS  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Duan Z, Shang Y, Gao Q, Zheng P, Wang C (2009) A phosphoketolase Mpk1 of bacterial origin is adaptively required for full virulence in the insect-pathogenic fungus Metarhizium anisopliae. Environ Microbiol 11:2351–2360

    Article  CAS  Google Scholar 

  • Edwards MG, Gatehouse AMR (2007) Biotechnology in crop protection: towards sustainable insect control. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007a) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  CAS  Google Scholar 

  • Fan Y, Fang W, Xiao Y, Yang X, Zhang Y, Bidochka MJ, Pei Y (2007b) Directed evolution for increased chitinase activity. Appl Microbiol Biotechnol 76:135–139

    Article  CAS  Google Scholar 

  • Fang W, Pava-Ripoll M, Wang SB, St. Leger RJ (2009) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genet Biol 46:277–285

    Article  CAS  Google Scholar 

  • Federici BA, Bonning BC, St. Leger RJ (2008) Improvement of insect pathogens as insecticides through genetic engineering. In: Hill C, Sleator R (eds) PathoBiotechnology. Landes Bioscience, Austin, pp 15–40

    Google Scholar 

  • Gongora CE (2004) Transformacion de Beauveria bassiana cepa Bb9112 con les genes de la proteina verde fluorescente y la protease pr1A de M. anisopliae. Rev Colomiana Entomol 30:1–5

    Google Scholar 

  • Gressel J (2001) Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends Biotechnol 19:149–154

    Article  CAS  Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835

    CAS  Google Scholar 

  • Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266

    Article  CAS  Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457

    Article  CAS  Google Scholar 

  • Hu G, St. Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

    Article  CAS  Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    Article  CAS  Google Scholar 

  • Langewald J, Kooyman C (2007) Green muscle, a fungal biopesticide for control of grasshoppers and locusts in Africa. In: Vincent C, Goettel MS, Lazarovitis G (eds) Biological control, a global perspective. CABI, Oxfordshire, pp 311–327

    Chapter  Google Scholar 

  • Lewis MW, Robalino IV, Keyhani NO (2009) Uptake of the fluorescent probe FM4–64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology 155:3110–3120

    Article  CAS  Google Scholar 

  • Liao XG, Fang WG, Zhang YJ, Fan YH, Wu XW, Zhou Q, Pei Y (2008) Characterization of a highly active promoter, PBbgpd, in Beauveria bassiana. Curr Microbiol 57:121–126

    Article  CAS  Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Ann Rev Entomol 46:667–702

    Article  CAS  Google Scholar 

  • Lu DD, Pava-Ripoll M, Li ZZ, Wang CS (2008) Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl Microbiol Biotechnol 81:515–522

    Article  CAS  Google Scholar 

  • Maniania NK, Sithanantham S, Ekesi S, Ampong-Nyarko K, Baumgartner J, Lohr B, Matoka CM (2003) A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protect 22:553–559

    Article  Google Scholar 

  • Milner RJ, Lim RP, Hunter DM (2002) Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Manag Sci 58:718–723

    Article  CAS  Google Scholar 

  • Pal S, St. Leger RJ, Wu LP (2007) Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282:8969–8977

    Article  CAS  Google Scholar 

  • Pava-Ripoll M, Posada FJ, Momen B, Wang CS, St. Leger RS (2008) Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol 99:220–226

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Carrasco-Diaz JA, Santiago-Alvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452

    Article  CAS  Google Scholar 

  • Screen SE, St. Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin—evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275:6689–6694

    Article  CAS  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:13–423

    Google Scholar 

  • St. Leger RJ (2007) Metarhizium anisopliae as a model for studying bioinsecticidal host pathogen interactions. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, New York, pp 179–204

    Chapter  Google Scholar 

  • St. Leger RJ (2008) Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 98:271–276

    Article  Google Scholar 

  • St. Leger RJ, Screen S (2001) Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt TM, Jackson C, Morgan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI, Oxfordshire, pp 219–238

    Chapter  Google Scholar 

  • St. Leger RJ, Wang CS (2009) Entomopathogenic fungi and the genomics era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI, Oxfordshire, pp 365–400

    Chapter  Google Scholar 

  • St. Leger RJ, Frank DC, Roberts DW, Staples RC (1992) Molecular-cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem 204:991–1001

    Article  CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996a) Construction of an improved mycoinsecticide over-expressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354

    Article  CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW (1996b) Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62:1257–1264

    CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW (1996c) Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during fungal invasion of host (M. sexta) cuticle. Appl Environ Microbiol 62:907–912

    CAS  Google Scholar 

  • Thomas MB, Read AF (2007a) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377–383

    Article  CAS  Google Scholar 

  • Thomas MB, Read AF (2007b) Fungal bioinsecticide with a sting. Nat Biotechnol 25:1367–1368

    Article  CAS  Google Scholar 

  • Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invertebr Pathol 80:177–187

    Article  CAS  Google Scholar 

  • Wanchoo A, Lewis MW, Keyhani NO (2009) Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 155:3121–3123

    Article  CAS  Google Scholar 

  • Wang CS, St. Leger RJ (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A 103:6647–6652

    Article  CAS  Google Scholar 

  • Wang CS, St. Leger RJ (2007a) A scorpion neurotoxin increases the potency of a fungal insecticide. Nature Biotechnol 25:1455–1456

    Article  CAS  Google Scholar 

  • Wang CS, St. Leger RJ (2007b) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    Article  CAS  Google Scholar 

  • Wang CS, St. Leger RJ (2007c) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816

    Article  CAS  Google Scholar 

  • Wang CS, Hu G, St. Leger RJ (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (M. sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718

    Article  CAS  Google Scholar 

  • Wang CS, Duan ZB, St. Leger RJ (2008) MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryot Cell 7:302–309

    Article  Google Scholar 

  • Whetstone PA, Hammock BD (2007) Delivery methods for peptide and protein toxins in insect control. Toxicon 49:576–596

    Article  CAS  Google Scholar 

  • Zlotkin E, Fishman Y, Elazar M (2000) AaIT: from neurotoxin to insecticide. Biochimie 82:869–881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Basic Research Program of China (2009CB118904), the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-037) and by multiple grants from the National Science foundation and the United States Department of agriculture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond J. St. Leger or Chengshu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St. Leger, R.J., Wang, C. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 85, 901–907 (2010). https://doi.org/10.1007/s00253-009-2306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2306-z

Keywords

Navigation