Skip to main content

Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

Abstract

Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • American Petroleum Institute (1959) Recommended practice 28. First edn

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidelman JG, Struhl KE (1988) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Batista JF, Pereira RF, Lopes JM, Carvalho MF, Feio MJ, Reis MA (2000) In situ corrosion control in industrial water systems. Biodegradation 11:441–448

    Article  CAS  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion, towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  CAS  Google Scholar 

  • Benka-Coker MO, Metseagharun W, Ekundayo JA (1995) Abundance of sulphate-reducing bacteria in Niger Delta oilfield waters. Biores Tech 54:151–154

    Article  CAS  Google Scholar 

  • Bermont-Bouis D, Janvier M, Grimont PA, Dupont I, Vallaeys T (2007) Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol 102:161–168

    Article  CAS  Google Scholar 

  • Bloomfield SF, Arthur M (1994) Mechanisms of inactivation and resistance of spores to chemical biocides. Soc Appl bacterial Symp Ser 23:91S–104S

    CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 18:483–485

    Article  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel K (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690

    Article  CAS  Google Scholar 

  • Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  Google Scholar 

  • Critchley MM, Pasetto R, O’Halloran RJ (2004) Microbiological influences in ‘blue water’ copper corrosion. J Appl Microbiol 97:590–597

    Article  CAS  Google Scholar 

  • Cuypers H, Zumft WG (1993) Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. J Bacteriol 175:7236–7246

    CAS  Google Scholar 

  • Delille D (2000) Response of Antarctic soil bacterial assemblages to contamination by diesel fuel and crude oil. Microb Ecol 40:159–168

    CAS  Google Scholar 

  • Drysdale GD, Kasan HC, Bux F (1999) Denitrification by heterotrophic bacteria during activated sludge treatment. Water SA 25:357–362

    CAS  Google Scholar 

  • Eaton A, Clesceri L, Greenberg A (1995) Standards methods for the examination of water and wastewater, 19th edn. APHA, Washington, DC

    Google Scholar 

  • Graves JW, Sullivan EH (1996) Internal corrosion in gas gathering system and transmission lines. Mater Prot 5:33–37

    Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Stanely JT (1994) In: Williams ST (ed) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jana J, Jain AK, Sahota SK, Dhawan HC (1999) Failure analysis of oil pipelines. Bull Electrochem 15:262–265

    CAS  Google Scholar 

  • Jan-Roblero J, Romero JM, Amaya M, Le Borgne S (2004) Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Appl Microbiol Biotechnol 64:862–867

    Article  CAS  Google Scholar 

  • Jan-Roblero J, Posadas A, Zavala-Dıaz de la Serna FJ, Garcıa R, Hernandez-Rodrıguez C (2008) Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico. World J Microbiol Biotechnol 24:1775–1784

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • LeChevallier MW, Cawthon CD, Lee RG (1988) Factors promoting survival of bacteria in chlorinated water supplies. Appl Environ Microbiol 54:649–654

    CAS  Google Scholar 

  • Little B, Ray R (2002) A perspective on corrosion inhibition by biofilms. Corrosion 58:424–428

    CAS  Article  Google Scholar 

  • Lloyd-Jones G, Trudgill PW (1989) The degradation of alicylic hydrocarbon by a microbial consortium. Int Bioremed 25:197–206

    CAS  Google Scholar 

  • Lopes FA, Morin P, Oliveira R, Melo LF (2006) Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J Appl Microbiol 101:1087–109

    Article  CAS  Google Scholar 

  • Maruthamuthu S, Mohanan S, Rajasekar A, Muthukumar N, Ponmarippan S, Subramanian P, Palaniswamy N (2005) Role of corrosion inhibitors on bacterial corrosion in petroleum product pipeline. Indian J Chem Technol 12:567–575

    CAS  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Thomas P, Fernandezb L, Ramirez F, Cayol JL, Garcia JL, Olliviera B (2003) Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97–103

    Article  CAS  Google Scholar 

  • Miranda-Tello E, Bethencourt M, Botana FJ, Cano MJ, Sánchez-Amaya JM, Corzo A, García de Lomas J, Fardeau ML, Ollivier B (2006) Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corr Sci 48:2417–2431

    Article  CAS  Google Scholar 

  • Mora-Mentdoze JL, Pandilla-Viveros AA, Zavala-Olivares G, Gonzalez-Nuriez MA, Moreno-Serrano JL, Hernandez-Gayosso MJ, Garcia-Esquivel, Rand Galindez (2003) Corrosion NACE Paper No 03548.

  • Muthukumar N, Rajasekar A, Ponmarriappan S, Mohanan S, Maruthamuthu S, Muralidharan S, Subramanian P, Palaniswamy N, Raghavan M (2003a) Microbiologically influenced corrosion in petroleum product pipelines: a review. Indian J Exp Biol 41:1012–1022

    CAS  Google Scholar 

  • Muthukumar N, Mohanan S, Maruthamuthu S, Subramanian P, Palaniswamy N, Raghavan M (2003b) Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion. Electrochem Comm 5:422–427

    Article  CAS  Google Scholar 

  • Muthukumar N, Maruthamuthu S, Palaniswamy N (2007) Role of cationic and nonionic surfactants on biocidal efficiency in diesel-water interface. Colloids Surf B: Biointerfaces 57:152–160

    Google Scholar 

  • Nealson KH (1992) The manganese-oxidizing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, vol 3, 2nd edn. Springer, New York, pp 2310–2320

    Google Scholar 

  • Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez-Rodriguez C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12:122–133

    Article  CAS  Google Scholar 

  • Oblinger JL, Koburger JA (1975) Understanding and teaching the most probable number technique. J Milk Food Technol 38:540–545

    Google Scholar 

  • Obuekwe CO, Westlake DWS (1987) Occurrence of bacteria in Pembina oil pipeline system and their role in corrosion process. Appl Microbiol Biotechnol 26:389–393

    CAS  Google Scholar 

  • Pim JH (1988) Tank corrosion study, Suffolk Country, Department of Health Services, Office of Underground Storage Tanks, US EPA

  • Pope DH, Pope RM (1998) Guide for the monitoring and treatment of microbiologically influenced corrosion in the natural gas industry. GRI report GRI-96/0488. Gas Research Institute, Des Plaines

    Google Scholar 

  • Postgate JR (1984) The sulphate reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Rajasekar A, Ponmariappan S, Maruthamuthu S, Palaniswamy N (2007a) Bacterial degradation and corrosion of naphtha in transporting pipeline. Current Microbiol 55:374–381

    Article  CAS  Google Scholar 

  • Rajasekar A, Ganesh Babu T, Karutha Pandian S, Maruthamuthu S, Palaniswamy N, Rajendran A (2007b) Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion. J Ind Microbiol Biotechnol 34:589–598

    Article  CAS  Google Scholar 

  • Russell AD (1995) Mechanisms of bacterial resistance to biocides. Inter Biodeter Biodegrad 36:247–265

    Article  CAS  Google Scholar 

  • Samant AK, Anto P (1992) Failure of pipelines in Indian offshore and remedial measures. In: Proceedings of the third National Corrosion Congress on Corrosion Control by NCCI, Karaikudi, India, p 188

  • Stapleton P (1987) Sweden report, US EPA, US, T2-5-22B

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Von Wolzogen Kuhr CAH, Vander Klugt Walker IS (1934) The graphitization of cat iron as an electrochemical process in anaerobic solid. Water 18:147–165

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA for phylogenetic study. J. Bacteriol 173:697–703

    Google Scholar 

  • Westlake DWS, Semple KM, Obuekwe CO (1986) Corrosion by ferric-iron reducing bacteria isolated from oil production systems. In: Dexter SC (ed) Biologically induced corrosion. NACE, Houston, pp 193–200

    Google Scholar 

  • Zhu XY, Lubeck J, Kilbane JJ (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:354–5363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Peng Ting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rajasekar, A., Anandkumar, B., Maruthamuthu, S. et al. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85, 1175–1188 (2010). https://doi.org/10.1007/s00253-009-2289-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2289-9

Keywords

  • Carbon steel API 5 L-X60
  • Petroleum product pipeline
  • Bacterial community
  • 16S rDNA analysis
  • Microbiologically influenced corrosion