Skip to main content
Log in

Synthesis of dextrans with controlled amounts of α-1,2 linkages using the transglucosidase GBDCD2

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

GBD–CD2 is an α-1,2 transglucosidase engineered from DSR-E, a glucansucrase naturally produced by Leuconostoc mesenteroides NRRL B-1299. This enzyme catalyses from sucrose, the α-1,2 transglucosylation of glucosyl moieties onto α-1,6 dextran chains. Steady-state kinetic studies showed that hydrolysis and transglucosylation reactions occurred at the early stage of the reaction in the presence of 70 kDa dextran as acceptor and sucrose. The transglucosylation reaction catalysed by GBD–CD2 follows a Ping Pong Bi Bi mechanism with a high k cat value of 970 s−1. The amount of the synthesised α-1,2 side chains was found to be directly dependent on the initial molar ratio [Sucrose]/[Dextran]. Dextrans with controlled α-1,2 linkage contents ranging from 13% to 40% were synthesised. The procedure resulted in the production of dextrans with the highest content of α-1,2 linkages ever reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Böker M, Jördening HJ, Buchholz K (1994) Kinetics of leucrose formation from sucrose by dextransucrase. Biotechnol Bioeng 43:856–864

    Article  Google Scholar 

  • Boucher J, Daviaud D, Simeon-Remaud M, Carpene C, Saulnier-Blache JS, Monsan P, Valet P (2003) Effect of non-digestible gluco-oligosaccharides on glucose sensitivity in high fat diet fed mice. J Physiol Biochem 59:169–173

    Article  CAS  Google Scholar 

  • Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P, Willemot RM (2002) Molecular characterization of DSR-E, an alpha-1, 2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184:5753–5761

    Article  CAS  Google Scholar 

  • Côté GL (2009) Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohydr Res 344:187–190

    Article  Google Scholar 

  • Côté GL, Robyt JF (1983) The formation of α-D-(1→3) branch linkages by an exocellular glucansucrase from Leuconostoc mesenteroides NRRL B-742. Carbohydr Res 119:141–156

    Article  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server. http://afmb.cnrs-mrs.fr/_cazy/CAZY/index.html

  • Demuth K, Jordening HJ, Buchholz K (2002) Oligosaccharide synthesis by dextransucrase: new unconventional acceptors. Carbohydr Res 337:1811–1820

    Article  CAS  Google Scholar 

  • Djouzi Z, Andrieux C, Pelenc V, Somarriba S, Popot F, Paul F, Monsan P, Szylit O (1995) Degradation and fermentation of alpha-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats. J Appl Microbiol 79:117–127

    Article  CAS  Google Scholar 

  • Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monsan P (1998) Characterization of the different dextransucrase activities excreted in glucose, fructose, or sucrose medium by Leuconostoc mesenteroides NRRL B-1299. Appl Environ Microbiol 64:1298–1302

    CAS  Google Scholar 

  • Dols M, Remaud-Simeon M, Willemot RM, Demuth B, Jördening HJ, Buchholz K, Monsan P (1999) Kinetic modeling of oligosaccharide synthesis catalyzed by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol Bioeng 63:308–315

    Article  CAS  Google Scholar 

  • Fabre E, Bozonnet S, Arcache A, Willemot RM, Vignon M, Monsan P, Remaud-Simeon M (2005) Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly alpha-1, 2 branched dextran. J Bacteriol 187:296–303

    Article  CAS  Google Scholar 

  • Flickinger EA, Wolf BW, Garleb KA, Chow JM, Leyer GJ, Johns PW, Fahey GC Jr (2000) Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J Nutr 130:1267–1273

    CAS  Google Scholar 

  • Funane K, Ishii T, Ono H, Kobayashi M (2005) Changes in linkage pattern of glucan products induced by substitution of Lys residues in the dextransucrase. FEBS Lett 579:4739–4745

    Article  CAS  Google Scholar 

  • Hellmuth H, Hillringhaus L, Hobbel S, Kralj S, Dijkhuizen L, Seibel J (2007) Highly efficient chemoenzymatic synthesis of novel branched thiooligosaccharides by substrate direction with glucansucrases. Chembiochem 8:273–276

    Article  CAS  Google Scholar 

  • Hellmuth H, Wittrock S, Kralj S, Dijkhuizen L, Hofer B, Seibel J (2008) Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: toward tailor-made polymer and oligosaccharide products. Biochemistry 47:6678–6684

    Article  CAS  Google Scholar 

  • Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK (2004) Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43:3104–3110

    Article  CAS  Google Scholar 

  • Joucla G, Pizzut S, Monsan P, Remaud-Simeon M (2006) Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS Lett 580:763–768

    Article  CAS  Google Scholar 

  • Kitaoka M, Robyt JF (1999) Mechanism of the action of Leuconostoc mesenteroides B-512FMC dextransucrase: kinetics of the transfer of D-glucose to maltose and the effects of enzyme and substrate concentrations. Carbohydr Res 320:183–191

    Article  CAS  Google Scholar 

  • Koepsell HJ, Tsuchiya HM, Hellman NN, Kazenko A, Hoffman CA, Sharpe ES, Jackson RW (1953) Enzymatic synthesis of dextran; acceptor specificity and chain initiation. J Biol Chem 200:793–801

    CAS  Google Scholar 

  • Kralj S, van Geel-Schutten IG, Faber EJ, van der Maarel MJ, Dijkhuizen L (2005) Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Biochemistry 44:9206–9216

    Article  CAS  Google Scholar 

  • Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L (2008) NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr Res 343:1446–1455

    Article  CAS  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131–151

    CAS  Google Scholar 

  • Mooser G, Hefta SA, Paxton RJ, Shively JE, Lee TD (1991) Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J Biol Chem 266:8916–8922

    CAS  Google Scholar 

  • Moulis C, Arcache A, Escalier PC, Rinaudo M, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2006a) High-level production and purification of a fully active recombinant dextransucrase from Leuconostoc mesenteroides NRRL B-512F. FEMS Microbiol Lett 261:203–210

    Article  CAS  Google Scholar 

  • Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2006b) Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281:31254–31267

    Article  CAS  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing, reference index version 2.4.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  • Remaud-Simeon M, Lopez-Munguia A, Pelenc V, Paul V, Monsan P (1994) Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1→2) linkages. Appl Biochem Biotechnol 44:101–117

    Article  CAS  Google Scholar 

  • Remaud-Simeon M, Willemot RM, Sarçabal P, Potocki de Montalk G, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catal B: Enzym 10:117–128

    Article  CAS  Google Scholar 

  • Robyt JF, Walseth TF (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr Res 61:433–435

    Article  CAS  Google Scholar 

  • Sanz ML, Côté GL, Gibson GR, Rastall RA (2006) Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria. J Agric Food Chem 54:9779–9784

    Article  CAS  Google Scholar 

  • Seeberger PH (2008) Automated carbohydrate synthesis as platform to address fundamental aspects of glycobiology—current status and future challenges. Carbohydr Res 343:1889–1896

    Article  CAS  Google Scholar 

  • Segel IH (1993) Enzyme kinetics—behaviour and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, Hoboken

    Google Scholar 

  • Seymour FR, Knapp RD (1980) Structural analysis of α-D-glucans by 13C-NMR, spin-lattice relaxation studies. Carbohydr Res 81:67–103

    Article  CAS  Google Scholar 

  • Seymour FR, Slodki ME, Plattner RD, Jeanes A (1977) Six unusual dextrans: methylation structural analysis by combined G.L.C.-M.S. of per-O-acetyl-aldonitriles. Carbohydr Res 53:153–166

    Article  CAS  Google Scholar 

  • Seymour FR, Knapp RD, Bishop SH (1979) Correlation of the structure of dextrans to their 1H-NMR spectra. Carbohydr Res 74:77–92

    Article  CAS  Google Scholar 

  • Shaikh FA, Withers SG (2008) Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochem Cell Biol 86:169–177

    Article  CAS  Google Scholar 

  • Sumner J, Howells S (1935) A method for determination of invertase activity. J Biol Chem 108:51–54

    CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out at MetaSys—the Metabolomics & Fluxomics Center at the Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés (LISBP, Toulouse, France)—which is supported by the Région Midi-Pyrénées (France) and the European Regional Development Fund (ERDF). We also gratefully acknowledge Pr. Philippe Besse, Sandrine Laguerre, Dr. Gabrielle Potocki-Véronèse and Pierre Escalier for their assistance. Yoann Brison is supported by a grant from the Région Midi-Pyrénées, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali Remaud-Siméon.

Additional information

Yoann Brison and Emeline Fabre contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brison, Y., Fabre, E., Moulis, C. et al. Synthesis of dextrans with controlled amounts of α-1,2 linkages using the transglucosidase GBDCD2. Appl Microbiol Biotechnol 86, 545–554 (2010). https://doi.org/10.1007/s00253-009-2241-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2241-z

Keywords

Navigation