Applied Microbiology and Biotechnology

, Volume 85, Issue 1, pp 127–140 | Cite as

Global transcriptome analysis of the Mycobacterium bovis BCG response to sodium hypochlorite

  • Hyeung-Jin Jang
  • Chantal Nde
  • Freshteh Toghrol
  • William E. Bentley
Genomics and Proteomics

Abstract

Tuberculosis is a common and often deadly infectious disease caused by mycobacteria, mainly Mycobacterium tuberculosis and infrequently by other subspecies of the M. tuberculosis complex, such as M. bovis. Sodium hypochlorite (bleach) is routinely used in hospitals and health care facilities for surface sterilization; however, the modes of action of bleach on M. bovis BCG and how this organism develops resistance to sodium hypochlorite have not been elucidated. In this study, we performed a global toxicogenomic analysis of the M. bovis response to 2.5 mM sodium hypochlorite after 10 and 20 min. M. bovis BCG growth was monitored by measuring the quantity of ATP in picomoles produced over a short exposure time (10–60 min) to sodium hypochlorite. This study revealed significant regulation of oxidative stress response genes of M. bovis BCG, such as oxidoreductase, peroxidase, heat shock proteins and lipid transport, and metabolism genes. We interpreted this response as a potentially more lethal interplay between fatty acid metabolism, sulfur metabolism, and oxidative stress. Our results also suggest that sodium hypochlorite repressed transcription of genes involved in cell wall synthesis of M. bovis. This study shows that the treatment of M. bovis BCG with bleach inhibits the biosynthesis of outer cell wall mycolic acids and also induces oxidative damage.

Keywords

Toxicogenomics Microarray Mycobacterium bovis BCG Sodium hypochlorite Bleach 

Supplementary material

253_2009_2208_Fig1_ESM.gif (142 kb)
Supplement Figure 1

Standard curve showing the correlation between ATP measurements in relative light units (RLU) and picomoles (GIF 141 Kb).

253_2009_2208_Fig1_ESM.tif (308 kb)
High resolution image (TIFF 308 kb)

References

  1. Affymetrix (2004) Affymetrix GeneChip® expression analysis technical manual. Affymetrix, Inc, Santa ClaraGoogle Scholar
  2. Albrich JM, Hurst JK (1982) Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites. FEBS Lett 144:157–161CrossRefGoogle Scholar
  3. Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST (2002) Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44:9–19CrossRefGoogle Scholar
  4. Barry CE 3rd, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179CrossRefGoogle Scholar
  5. Brennan MJ, Delogu G, Chen Y, Bardarov S, Kriakov J, Alavi M, Jacobs WR Jr (2001) Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69:7326–7333CrossRefGoogle Scholar
  6. Cahn P, Perez H, Ben G, Ochoa C (2003) Tuberculosis and HIV: a partnership against the most vulnerable. J Int Assoc Physicians AIDS Care (Chic Ill) 2:106–123CrossRefGoogle Scholar
  7. Cain KP, Benoit SR, Winston CA, Mac Kenzie WR (2008) Tuberculosis among foreign-born persons in the United States. Jama 300:405–412CrossRefGoogle Scholar
  8. Candeias LP, Patel KB, Stratford MR, Wardman P (1993) Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett 333:151–153CrossRefGoogle Scholar
  9. Chang W, Small DA, Toghrol F, Bentley WE (2005) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115CrossRefGoogle Scholar
  10. Chang W, Small DA, Toghrol F, Bentley WE (2006a) Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 188:1648–1659CrossRefGoogle Scholar
  11. Chang W, Toghrol F, Bentley WE (2006b) Toxicogenomic response of Staphylococcus aureus to peracetic acid. Environ Sci Technol 40:5124–5131CrossRefGoogle Scholar
  12. Chang MW, Toghrol F, Bentley WE (2007) Toxicogenomic response to chlorination includes induction of major virulence genes in Staphylococcus aureus. Environ Sci Technol 41:7570–7575CrossRefGoogle Scholar
  13. Cole ST (2002) Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology 148:2919–2928Google Scholar
  14. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544CrossRefGoogle Scholar
  15. Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:2503–2511CrossRefGoogle Scholar
  16. Delogu G, Brennan MJ (2001) Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun 69:5606–5611CrossRefGoogle Scholar
  17. Dosanjh NS, Rawat M, Chung JH, Av-Gay Y (2005) Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiol Lett 249:87–94CrossRefGoogle Scholar
  18. Dubnau E, Chan J, Raynaud C, Mohan VP, Laneelle MA, Yu K, Quemard A, Smith I, Daffe M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637CrossRefGoogle Scholar
  19. Dukan S, Touati D (1996) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178:6145–6150Google Scholar
  20. Espinal MA (2003) The global situation of MDR-TB. Tuberculosis (Edinb) 83:44–51CrossRefGoogle Scholar
  21. Espitia C, Laclette JP, Mondragon-Palomino M, Amador A, Campuzano J, Martens A, Singh M, Cicero R, Zhang Y, Moreno C (1999) The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology 145(Pt 12):3487–3495Google Scholar
  22. Fox BG, Lyle KS, Rogge CE (2004) Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc Chem Res 37:421–429CrossRefGoogle Scholar
  23. Gomez JE, McKinney JD (2004) M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84:29–44CrossRefGoogle Scholar
  24. Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96:11554–11559CrossRefGoogle Scholar
  25. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966Google Scholar
  26. Imlay JA, Linn S (1986) Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J Bacteriol 166:519–527Google Scholar
  27. Jang HJ, Chang MW, Toghrol F, Bentley WE (2008) Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus. Appl Microbiol Biotechnol 78:695–707CrossRefGoogle Scholar
  28. Khan AU, Kasha M (1994a) Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: application to studies on the deleterious health effects of chlorinated drinking water. Proc Natl Acad Sci U S A 91:12362–12364CrossRefGoogle Scholar
  29. Khan AU, Kasha M (1994b) Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci U S A 91:12365–12367CrossRefGoogle Scholar
  30. Miller RA, Britigan BE (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18Google Scholar
  31. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312CrossRefGoogle Scholar
  32. Pasterkamp H (2001) Of Microsoft and mycobacteria. Can J Infect Dis 12:72–73Google Scholar
  33. Pym AS, Cole ST (1999) Post DOTS, post genomics: the next century of tuberculosis control. Lancet 353:1004–1005CrossRefGoogle Scholar
  34. Shimakata T, Fujita Y, Kusaka T (1980) Involvement of one of two enoyl-CoA hydratases and enoyl-CoA reductase in the acetyl-CoA-dependent elongation of medium chain fatty acids by Mycobacterium smegmatis. J Biochem 88:1051–1058Google Scholar
  35. Singh VK, Moskovitz J, Wilkinson BJ, Jayaswal RK (2001) Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and is highly induced by the cell-wall-active antibiotic oxacillin. Microbiology 147:3037–3045Google Scholar
  36. Small DA, Chang W, Toghrol F, Bentley WE (2007a) Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 76:1093–1105CrossRefGoogle Scholar
  37. Small DA, Chang W, Toghrol F, Bentley WE (2007b) Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 74:176–185CrossRefGoogle Scholar
  38. U.S. Food and Drug Administration (2003) Indirect food additives: adjuvants, production aids, and sanitizers 21 C.F.R. U.S. Food and Drug Administration, Washington D.C.Google Scholar
  39. Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM (1998) Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144(Pt 10):2687–2695CrossRefGoogle Scholar
  40. Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U (2008) Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691–701CrossRefGoogle Scholar
  41. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE 3rd (1995) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 92:6630–6634CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Hyeung-Jin Jang
    • 1
  • Chantal Nde
    • 2
  • Freshteh Toghrol
    • 3
  • William E. Bentley
    • 2
  1. 1.Department of Biochemistry, College of Oriental MedicineKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Center for Biosystems ResearchUniversity of Maryland Biotechnology InstituteCollege ParkUSA
  3. 3.Microarray Research Laboratory, Biological and Economic Analysis Division, Office of Pesticide ProgramsUS Environmental Protection AgencyFort MeadeUSA

Personalised recommendations