Applied Microbiology and Biotechnology

, Volume 85, Issue 5, pp 1521–1531 | Cite as

New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction

  • Arthur Tapi
  • Marlène Chollet-Imbert
  • Bart Scherens
  • Philippe Jacques
Applied Genetics and Molecular Biotechnology

Abstract

Bacillus strains produce non-ribosomal lipopeptides that can be grouped into three families: surfactins or lichenysins, iturins and fengycins or plispastatins. These biosurfactants show a broad spectrum of biological activities. To detect strains able to produce these lipopeptides, a new polymerase chain reaction screening approach was developed using degenerated primers based on the intraoperon alignment of adenylation and thiolation nucleic acid domains of all enzymes implicated in the biosynthesis of each lipopeptide family. The comparative bioinformatics analyses of each operon led to the design of four primer pairs for the three families taking into account the differences between open reading frames of each synthetase gene. Tested on different Bacillus sp. strains, this technique was used successfully to detect not only the expected genes in the lipopeptide producing strains but also the presence of a plispastatin gene in Bacillus subtilis ATCC 21332 and a gene showing a high similarity with the polyketide synthase type I gene in the B. subtilis ATCC 6633 genome. It also led to the discovery of the presence of non-ribosomal peptide synthetase genes in Bacillus thuringiensis serovar berliner 1915 and in Bacillus cereus LMG 2098. In addition, this work highlighted the differences between the fengycin and plipastatin operon at DNA level.

Keywords

Bacillus sp. Non-ribosomal peptide synthetase PCR Lipopeptide Degenerated primers 

Supplementary material

253_2009_2176_MOESM1_ESM.doc (33 kb)
Table 1Number and size (*bp) of amplicons obtained by in silico PCR (AmplifX Software) from lipopeptide genes deduced from the genome of strains indicated in Table 3. (DOC 33 kb)

References

  1. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecol 49:10–24CrossRefGoogle Scholar
  2. Barrios-Llerena ME, Burja AM, Wright PC (2007) Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 34:443–56CrossRefGoogle Scholar
  3. Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556Google Scholar
  4. Caboche S, Pupin M, Leclere V, Fontaine A, Jacques Ph, Kucherov G (2008) Norine: a database of non-ribosomal peptides. Nucl Acids Res 36:326–331CrossRefGoogle Scholar
  5. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Süssmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036CrossRefGoogle Scholar
  6. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37CrossRefGoogle Scholar
  7. Chollet-Imbert M, Gancel F, Slomianny C, Jacques Ph (2009) Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Arch Microbiol 191:63–71CrossRefGoogle Scholar
  8. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299CrossRefGoogle Scholar
  9. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: Isolations, structures, and antifungal activities of the congeners. J Antibiotics 48:1240–1247Google Scholar
  10. Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978CrossRefGoogle Scholar
  11. Giacomodonato MN, Pettinari J, Souto GI, Meandez SB, Loapez NI (2001) A PCR-based method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere. World J Microbiol Biotechnol 17:51–55CrossRefGoogle Scholar
  12. Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210CrossRefGoogle Scholar
  13. Jacques Ph, Hbid C, Destain J, Razafindralambo H, Paquot M, Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotechnol 77:223–233CrossRefGoogle Scholar
  14. Jullien N (2007) AmplifX software 1.44. http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page. Accessed 12 Nov 2006
  15. Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231:107–110CrossRefGoogle Scholar
  16. Kunst F et al (1997) The complete genome sequence of the Gram-positive model organism Bacillus subtilis (strain 168). Nature 390:249–256CrossRefGoogle Scholar
  17. Lee YK, Kim SB, Park CS, Kim JG, Oh HM, Yoon BD, Kim HS (2005) Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrophobic liquids. Appl Microbiol Biotechnol 67:789–794CrossRefGoogle Scholar
  18. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques Ph (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584CrossRefGoogle Scholar
  19. Marahiel M (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567CrossRefGoogle Scholar
  20. Molenaar D, Bringel F, Schuren FH, De Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127CrossRefGoogle Scholar
  21. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49CrossRefGoogle Scholar
  22. Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in B. subtilis. J Bacteriol 170:5662–5668Google Scholar
  23. Needleman SB, Wunsch CD (1970) Needleman–Wunsch global alignment. J Mol Biol 48:443–453CrossRefGoogle Scholar
  24. Neilan B, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Börner T (1999) Nonribosomal peptide synthesis and toxigenicity of Cyanobacteria. J Bacteriol 181:4089–4097Google Scholar
  25. Nikolskaya AN, Panaccione DG, Walton JD (1995) Identification of peptide synthetase-encoding genes from filamentous fungi producing host-selective phytotoxins or analogs. Gene 165:207–211CrossRefGoogle Scholar
  26. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:116–125CrossRefGoogle Scholar
  27. Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotech 69:29–38CrossRefGoogle Scholar
  28. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotech 51:553–563CrossRefGoogle Scholar
  29. Rajendran N (1999) Identification and cloning of a gene locus encoding peptide synthetase of Pseudomonas fluorescens by two sets of PCR primers. Z Naturforschung 54:105–109Google Scholar
  30. Ramarathnam R, Bo S, Chen Y, Dilantha WG, Xueven G, Kievit T (2007) Molecular and biochemical detection of fengycin and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911CrossRefGoogle Scholar
  31. Rupf S, Merte K, Eschrich K (1999) Quantification of bacteria in oral samples by competitive polymerase chain reaction. J Dent Res 78:850–856CrossRefGoogle Scholar
  32. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54c:859–866Google Scholar
  33. Schwarzer D, Finking R, Marahiel MA (2003) Non ribosomal peptides: from genes to products. Nat Prod Rep 20:275–287CrossRefGoogle Scholar
  34. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738CrossRefGoogle Scholar
  35. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques Ph, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41CrossRefGoogle Scholar
  36. Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 43:11331–11343CrossRefGoogle Scholar
  37. Turgay K, Marahiel MA (1994) A general approach for identifying and cloning of peptide synthetase genes. Peptide Res 7:238–241Google Scholar
  38. Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing and characterization of iturinA operon. J Bacteriol 183:6265–6273CrossRefGoogle Scholar
  39. Tsuge K, Matsui K, Itaya M (2007) Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol 129:592–603CrossRefGoogle Scholar
  40. Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot 39:737–744Google Scholar
  41. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J Antibiot 39:888–901Google Scholar
  42. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219CrossRefGoogle Scholar
  43. Wu S, Zhong J, Huan L (2006) Genetics of subpeptin JM4-A and subpeptin JM4-B production by Bacillus subtilis JM4. Biochem Biophys Res Comm 344:1147–1154CrossRefGoogle Scholar
  44. Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q (2008) Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacteriol 191:1120–1121CrossRefGoogle Scholar
  45. Yakimov MM, Kroger A, Slepak TN, Giuliano L, Timmius KN, Golyshin PN (1998) A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta 1399:141–153Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Arthur Tapi
    • 1
  • Marlène Chollet-Imbert
    • 1
  • Bart Scherens
    • 2
  • Philippe Jacques
    • 1
  1. 1.Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien, UPRES-EA 1026, Polytech’Lille/IUTAUniversité des Sciences et Technologies de LilleLilleFrance
  2. 2.Institut de Recherches Microbiologiques JM WiameBrusselsBelgium

Personalised recommendations