Skip to main content
Log in

Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The separation of structurally related impurities from pharmaceutical plasmid DNA by highly scalable purification techniques is a challenge for biochemical engineering. Next to RNA, proteins, and lipopolysaccharides, the chromosomal DNA of the plasmid replicating host has to be removed. Here, we describe the application of reverse micellar extraction for the separation of chromosomal from plasmid DNA. By applying different procedures for alkaline lysis, bacterial lysates with different amounts of chromosomal DNA were generated. A reverse micellar extraction step enabled us to deplete the concentration of this impurity below the required level of 50 mg g−1 of plasmid DNA with almost complete plasmid recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  • Carlson A, Signs M, Liermann L et al (1995) Mechanical disruption of Escherichia coli for plasmid recovery. Biotechnol Bioeng 48:303–315

    Article  CAS  Google Scholar 

  • Chamsart S, Karnjanasorn T (2007) Alkaline-cell lysis through in-line static mixer reactor for the production of plasmid DNA for gene therapy. Biotechnol Bioeng 96:471–482

    Article  CAS  Google Scholar 

  • Chamsart S, Patel H, Hanak JA et al (2001) The impact of fluid-dynamic-generated stresses on chDNA and pDNA stability during alkaline cell lysis for gene therapy products. Biotechnol Bioeng 75:387–392

    Article  CAS  Google Scholar 

  • Goto M, Ono T, Horiuchi A et al (1999) Extraction of DNA by reversed micelles. J Chem Eng Jpn 32:123–125

    Article  CAS  Google Scholar 

  • Hatton TA (1989) Reversed micellar extraction of proteins. In: Scamehorn JF, Harwell JH (eds) Surfactant based separation processes. Marcel Dekker, New York

    Google Scholar 

  • Krishna SH, Srinivas ND, Raghavarao KS et al (2002) Reverse micellar extraction for downstream processing of proteins/enzymes. Adv Biochem Eng Biotechnol 75:119–183

    CAS  PubMed  Google Scholar 

  • Lemmens R, Olsson U, Nyhammar T et al (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J Chromatogr B 784:291–300

    Article  CAS  Google Scholar 

  • Levy MS, O'Kennedy RD, Ayazi-Shamlou P et al (2000) Biochemical engineering approaches to the challenges of producing pure plasmid DNA. Trends Biotechnol 18:296–305

    Article  CAS  Google Scholar 

  • Meacle FJ, Zhang H, Papantoniou I et al (2007) Degradation of supercoiled plasmid DNA within a capillary device. Biotechnol Bioeng 97:1148–1157

    Article  CAS  Google Scholar 

  • O'Mahony K, Freitag R, Hilbrig F et al (2005) Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale. J Biotechnol 119:118–132

    Article  CAS  Google Scholar 

  • O'Mahony K, Freitag R, Hilbrig F et al (2007) Integration of bacteria capture via filtration and in situ lysis for recovery of plasmid DNA under industry-compatible conditions. Biotechnol Prog 23:895–903

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Streitner N, Voß C, Flaschel E (2007) Reverse micellar extraction systems for the purification of pharmaceutical grade plasmid DNA. J Biotechnol 131:188–196

    Article  CAS  Google Scholar 

  • Streitner N, Voß C, Flaschel E (2008) Isolierung von Plasmid-DNA durch inversmizellare Zweiphasensysteme—Optimierung der Rückextraktion. Chem Ing Tech 80:831–837

    Article  CAS  Google Scholar 

  • Voß C (2007) Production of plasmid DNA for pharmaceutical use. Biotechnol Annu Rev 13C:201–222

    Article  Google Scholar 

  • Voß C (2008) Downstream processing of plasmid DNA for gene therapy and genetic vaccination. Chem Eng Technol 31:858–863

    Article  Google Scholar 

  • Voß C, Schmidt T, Schleef M (2005) From bulk to delivery: plasmid manufacturing and storage. In: Schleef M (ed) DNA-pharmaceuticals. Wiley-VCH, Weinheim, pp 23–42

    Google Scholar 

  • Voß C, Schmidt T, Schleef M et al (2003) Production of supercoiled multimeric plasmid DNA for biopharmaceutical application. J Biotechnol 105:205–213

    Article  Google Scholar 

  • Zhang H, Kong S, Booth A et al (2007) Prediction of shear damage of plasmid DNA in pump and centrifuge operations using an ultra scale-down device. Biotechnol Prog 23:858–865

    Article  Google Scholar 

Download references

Acknowledgments

The research project was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and the Max-Buchner-Forschungsstiftung. Their support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Voß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschapalda, K., Streitner, N., Voß, C. et al. Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction. Appl Microbiol Biotechnol 84, 199–204 (2009). https://doi.org/10.1007/s00253-009-2088-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2088-3

Keywords

Navigation