Skip to main content
Log in

Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant Escherichia coli whole-cell biocatalysts harboring either a Baeyer–Villiger monooxygenase or ferulic acid decarboxylase were employed in organic-aqueous two-phase bioreactor systems. The feasibility of the bioproduction of water-insoluble products, viz., lauryl lactone from cyclododecanone and 4-vinyl guaiacol from ferulic acid were examined. Using hexadecane as the organic phase, 10∼16 g of lauryl lactone were produced in a 3-l bioreactor that operated in a semicontinuous mode compared to 2.4 g of product in a batch mode. For the decarboxylation of ferulic acid, a new recombinant biocatalyst, ferulic acid decarboxylase derived from Bacillus pumilus, was constructed. Selected solvents as well as other parameters for in situ recovery of vinyl guaiacol were investigated. Up to 13.8 g vinyl guaiacol (purity of 98.4%) were obtained from 25 g of ferulic acid in a 2-l working volume bioreactor by using octane as organic phase. These selected examples highlight the superiority of the two-phase biotransformations systems over the conventional batch mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin CVF, Woodley JM (2006) On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnol Bioeng 95:362–369

    CAS  PubMed  Google Scholar 

  • Barthelmebs L, Diviès C, Cavin J-F (2001) Expression in Escherichia coli of native and chimeric phenolic acid decarboxylases with modified enzymatic activities and method for screening recombinant E. coli strains expressing these enzymes. Appl Environ Microbiol 67:1063–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beneventi E, Ottolina G, Carrea G, Panzeri W, Fronza G, Lau PCK (2009) Enzymatic Baeyer–Villiger oxidation of steroids with cyclopentadecanone monooxygenase. J Mol Catal B: Enzym 58:164–168

    CAS  Google Scholar 

  • Bernini R, Mincione E, Barontini M, Provenzano G, Setti L (2007) Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63:9663–9667

    CAS  Google Scholar 

  • Brosius J (1984) Plasmid vectors for the selection of promoters. Gene 27:151–160

    CAS  PubMed  Google Scholar 

  • Buhler B, Schmid A (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 113:183–210

    Article  CAS  PubMed  Google Scholar 

  • Caesar B (2008) More than just ethanol–Factors driving industry growth. Ind Biotechnol 4:50–54

    Google Scholar 

  • Cavin J-F, Barthelmebs L, Diviès C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63:1939–1944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavin J-F, Dartois V, Diviès C (1998) Gene cloning, transcriptional analysis, purification, and characterization of phenolic aicd decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64:1466–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, LeazerJr JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas - a perspective from pharmaceutical manufacturers. Green Chem 9:411–420

    CAS  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

    CAS  PubMed  Google Scholar 

  • Deziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic /toxic compounds. Biodegradation 10:219–233

    CAS  PubMed  Google Scholar 

  • Doig SD, O' Sullivan LM, Patel S, Ward JM, Woodley JM (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb Technol 28:265–274

    CAS  PubMed  Google Scholar 

  • Gennaro PD, Ferrara S, Bestetti G, Sello G, Solera D, Galli E, Renzi F, Bertoni G (2008) Novel auto-inducing expression systems for the development of whole-cell biocatalysts. Appl Microbiol Biotechnol 79:617–625

    CAS  PubMed  Google Scholar 

  • Griengl H, Appenroth M, Dax K, Schwarz H (1969) Zur Umsetzung von Formaldehyd mit Hydroxystyrolen in alkalischem Medium. Monatsh Chem 100:316–327

    CAS  Google Scholar 

  • Hatakeyama H, Hayashi E, Haraguchi T (1977) Biodegradation of poly(3-methoxy-4-hydroxystyrene). Polym 18:759–763

    CAS  Google Scholar 

  • Heipieper H, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    CAS  PubMed  Google Scholar 

  • Hermann BG, Patel M (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41:7915–7921

    CAS  PubMed  Google Scholar 

  • Hilker I, Alphand W, Wohlgemuth R, Furstoss R (2004a) Microbial transformations, 56. Preparative scale asymmetric Baeyer–Villiger oxidation using a highly productive "two-in-one" resin-based in situ SFPR concept. Adv Synth Catal 346:203–214

    CAS  Google Scholar 

  • Hilker I, Gutiérrez MC, Alphand V, Wohlgemuth R, Furstoss R (2004b) Microbiological transformations 57. Facile and efficient resin-based in situ SFPR preparative-scale synthesis of an enantiopure “unexpected” lactone regioisomer via a Baeyer−Villiger oxidation process. Org Lett 6:1955–1958

    CAS  PubMed  Google Scholar 

  • Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Microbial transformations 59: First kilogram scale asymmetric microbial Baeyer–Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92:702–710

    CAS  PubMed  Google Scholar 

  • Hilker I, Gutiérrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V (2008) Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nat Protocol 3:546–554

    CAS  Google Scholar 

  • Huang Z, Dostal L, Rosazza JPN (1993) Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol 59:2244–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Dostal L, Rosazza JPN (1994) Purification and characterization of ferulic acid decarboxylase from Pseudomonas fluorescens. J Bacteriol 176:5912–5918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda I, Washino K, Maeda Y (2003) Graft polymerization of cyclic compounds on cellulose dissolved in tertabutylammonium fluoride /dimethyl sulfoxide. Fiber 59:110–114

    CAS  Google Scholar 

  • Iwaki H, Wang S, Grosse S, Bergeron H, Nagahashi A, Lertvorachon J, Yang J, Konishi Y, Hasegawa Y, Lau PCK (2006) Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer–Villiger oxidations of cyclic ketones. Appl Environ Microbiol 72:2707–2720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, Lee W, Kim YH, Kim K, Paik YK (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nat 433:541–545

    CAS  Google Scholar 

  • Kim P-Y, Pollard DJ, Woodley JM (2007) Substrate supply for effective biocatalysis. Biotechnol Prog 23:74–82

    CAS  PubMed  Google Scholar 

  • Lee IY, Volm TG, Rosazza JPN (1998) Decarboxylation of ferulic acid to 4-vinylguaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems. Enzyme Microb Technol 23:261–266

    CAS  Google Scholar 

  • Lee W-H, Park J-B, Park K, Kim M-D, Seo J-H (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338

    CAS  PubMed  Google Scholar 

  • Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

    CAS  PubMed  Google Scholar 

  • Mathew S, Abraham TE (2004) Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    CAS  PubMed  Google Scholar 

  • Mathew S, Abraham TE (2006) Bioconversions of ferulic acid, a hydroxycinnamic acid. Crit Rev Microbiol 33:115–125

    Google Scholar 

  • Muñoz R, Villaverde S, Guieysse B, Revah S (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25:410–422

    PubMed  Google Scholar 

  • Nomura E, Hosoda A, Mori H, Taniguchi H (2005) Rapid base-catalyzed decarboxylation and amide-forming reaction of substituted cinnamic acids via microwave heating. Appl Microbiol Biotechnol 7:863–866

    CAS  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 81:33–41

    Google Scholar 

  • Prim N, Pastor F, Diaz P (2003) Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA. Appl Microbiol Biotechnol 63:61–56

    Google Scholar 

  • Rodriguez H, Landete JM, Curiel JA, DelasRivas B, Mancheño JM, Muñoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748T. J Agric Food Chem 56:3068–3072

    CAS  PubMed  Google Scholar 

  • Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product. J Ind Microbiol 15:457–471

    CAS  PubMed  Google Scholar 

  • Sambrook JE, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    CAS  PubMed  Google Scholar 

  • Schumacher JD, Fakoussa RM (1999) Degradation of alicyclic molecules by Rhodococcus ruber CD4. Appl Microbiol Biotechnol 52:85–90

    CAS  PubMed  Google Scholar 

  • Staijen IE, van Beilen JB, Witholt B (2000) Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Eur J Biochem 267:1957–1965

    CAS  PubMed  Google Scholar 

  • ten Brink G-J, Arends IWCE, Sheldon RA (2004) The Baeyer−Villiger reaction: New developments toward greener procedures. Chem Rev 104:4105–4123

    CAS  PubMed  Google Scholar 

  • Thomas SM, DiCosimo R, Nagarajan V (2002) Biocatalysis: applications and potentials for the chemical industry. Trends Biotechnol 20:238–242

    CAS  PubMed  Google Scholar 

  • Tsujiyama S-I, Ueno M (2008) Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by Schizophyllum commune. Biosci Biotechnol Biochem 72:212–215

    CAS  PubMed  Google Scholar 

  • Walton AZ, Stewart JD (2002) An efficient enzymatic Baeyer–Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 18:262–268

    CAS  PubMed  Google Scholar 

  • Warth H, Mulhaupt R, Schatzle J (1997) Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing. Appl Poly Sci 64:231–242

    CAS  Google Scholar 

  • Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    CAS  PubMed  Google Scholar 

  • Yang J, Lorrain M-J, Rho D, Lau PCK (2006) Monitoring of Baeyer–Villiger biotransformation kinetics and fingerprinting using ReactIR 4000 spectroscopy. Ind Biotechnol 2:138–142

    CAS  Google Scholar 

  • Zago A, Degrassi G, Bruschi CV (1995) Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase. Appl Environ Microbiol 61:4484–4486

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Climate Change Technology and Innovation Biotechnology Program of the Canadian Biomass Innovation Network of Natural Resources Canada for financial support. We are grateful to H. Leisch for suggestions and help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. K. Lau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, S., Lorrain, MJ. et al. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl Microbiol Biotechnol 84, 867–876 (2009). https://doi.org/10.1007/s00253-009-2026-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2026-4

Keywords

Navigation