Skip to main content
Log in

Microbial response to reinjection of produced water in an oil reservoir

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial response to produced water reinjection (PWRI) in a North Sea oil field was investigated by a combination of cultivation and culture-independent molecular phylogenetic techniques. Special emphasise was put on the relationship between sulphate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB), and results were used to evaluate the possibility of nitrate treatment as a souring management tool during PWRI. Samples were collected by reversing the flow of the injection water, which provided samples from around the injection area. The backflowed samples were compared to produced water from the same platform and to backflowed samples from a biocide-treated seawater injector, which was the previous injection water treatment of the PWRI well. Results showed that reinjection of produced water promoted growth of thermophilic SRB. Thermophilic fatty acid oxidising NRB and potential nitrate-reducing sulphide-oxidising bacteria were also found. The finding of thermophilic NRB makes nitrate treatment during PWRI possible, although higher nitrate concentration will be necessary to compensate for the increased SRB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Baker GC, Cowan DA (2004) 16S rDNA primers and the unbiased assessment of thermophile diversity. Biochem Soc Trans 32:218–221

    Article  CAS  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    Article  CAS  Google Scholar 

  • Beeder J, Torsvik T, Lien TL (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    Article  CAS  Google Scholar 

  • Bjørnestad EØ, Sunde E, Dinning A (2005) The effect of produced water reinjection on reservoir souring in the Statfjord field. Petroleum Abstracts, vol 884455, Geilo, Norway

  • Bødtker G, Lysnes K, Torsvik T, Bjørnestad EØ, Sunde E (2009) Microbial analysis of backflowed injection water from a nitrate-treated North Sea oil reservoir. J Ind Microbiol Biotechnol 36:439–450

    Article  Google Scholar 

  • Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248

    Article  CAS  Google Scholar 

  • Cordruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  • Delong EF (1992) Archaea in Coastal Marine Environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fjellbirkeland A, Torsvik V, Øvreås L (2001) Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie Van Leeuwenhoek 79:209–217

    Article  CAS  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    Article  CAS  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    Article  CAS  Google Scholar 

  • Grassia GS, McLean KM, Glenat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68:272–282

    Article  CAS  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  CAS  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    Article  CAS  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Ovreas L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  CAS  Google Scholar 

  • Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F, Carreau L (1992) Desulfovibrio longus sp.nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–403

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal-RNA. Appl Environ Microbiol 59:695–700

    Article  CAS  Google Scholar 

  • Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50:1611–1619

    Article  CAS  Google Scholar 

  • Myhr S, Lillebø BLP, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    Article  CAS  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  Google Scholar 

  • Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    Article  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BKC, Prensier G, Egan A, Garcia JL, Ollivier B (1995a) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    Article  CAS  Google Scholar 

  • Ravot G, Ollivier B, Magot M, Patel BKC, Crolet JL, Fardeau ML, Garcia JL (1995b) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 61:2053–2055

    Article  CAS  Google Scholar 

  • Rees GN, Patel BKC, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

    Article  CAS  Google Scholar 

  • Reinsel MA, Sears JT, Stewart PS, McInerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Ind Microbiol 17:128–136

    Article  CAS  Google Scholar 

  • Sunde E, Thorstenson T, Torsvik T, Vaag JE, Espedal MS (1993) Field-related mathematical model to predict and reduce reservoir souring. Soc Petrol Eng SPE 25197:449–456

    Google Scholar 

  • Sunde E, Lillebø BLP, Bødtker G, Torsvik T, Thorstenson T (2004) H2S inhibition by nitrate injection on the Gullfaks field. Corrosion 2004 Paper 04760. NACE International, Houston

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and users guide to Canoco for Windows. Software for canonical community ordination (version 4). Centre for Biometry and Microcomputer Power, Wageningen and Ithaca

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Treusch AHS, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  Google Scholar 

  • Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 123–142

    Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    Article  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Procaryotes, vol 3. Springer, New York, pp 165–207

    Chapter  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments—description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  CAS  Google Scholar 

  • Yoshida N, Yagi K, Sato D, Watanabe N, Kuroishi T, Nishimoto K, Yanagida A, Katsuragi T, Kanagawa T, Kurane R, Tani Y (2005) Bacterial communities in petroleum oil in stockpiles. J Biosci Bioeng 99:143–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Statoil and the Norwegian Research Council through the Petromaks programme. The authors wish to thank Bente Edel Thorbjørnsen, Nirmaladevi Sivasambu, Rikke Helen Ulvøen, Bente-Lise Polden Lillebø, and Tove Leiknes at Unifob Petroleum, Section for Microbiology, University of Bergen, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Lysnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysnes, K., Bødtker, G., Torsvik, T. et al. Microbial response to reinjection of produced water in an oil reservoir. Appl Microbiol Biotechnol 83, 1143–1157 (2009). https://doi.org/10.1007/s00253-009-2015-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2015-7

Keywords

Navigation