Skip to main content
Log in

Differences in the substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A lanGT4 mutant of the landomycin A producer Streptomyces cyanogenus S136 was constructed, leading to the production of landomycin D with two deoxy sugars in the side chain and proving that LanGT4 is responsible for attaching the third deoxy sugar of the hexasaccharide side chain. Heterologous expression of lndGT4 of the landomycin E producer Streptomyces globisporus 1912 in the lanGT4 mutant restored landomycin A production, indicating that LndGT4, like LanGT4, also has the ability to work iteratively. A S. cyanogenus S136 mutant with a mutation in lanGT1, encoding a d-olivosyltransferase, was shown to produce landomycin I with one deoxy sugar and, surprisingly, a new landomycin derivative (landomycin L) containing a d-olivose followed by an l-rhodinose. Heterologous expression of lndGT1 of S. globisporus 1912 in the lanGT1 mutant did not restore landomycin A production but led to the formation of a second new landomycin derivative (landomycin K) containing an unusual pentasaccharide chain (d-olivose–d-olivose–l-rhodinose–d-olivose–l-rhodinose). The formation of landomycin L and landomycin K is most probably attributed to the high substrate flexibility of the rhodinosyltransferase LanGT4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  Google Scholar 

  • Egan S, Wiener P, Kallifidas D, Wellington EM (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol 64(12):5061–5063

    Article  CAS  Google Scholar 

  • Egan S, Wiener P, Kallifidas D, Wellington EM (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek 79(2):127–133

    Article  CAS  Google Scholar 

  • Fedorenko V, Basiliya L, Pankevych K, Dubitska L, Ostash B, Luzhetskyy A, Gromyko O, Krugel H (2000) Bull Instr Agr Microbiol (Ukr.) 8:27–31

    Google Scholar 

  • Henkel T, Rohr J, Beale JM, Schwenen L (1990) Landomycins, new angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A–D. J Antibiot (Tokyo) 43(5):492–503

    Article  CAS  Google Scholar 

  • Hoffmeister D, Ichinose K, Bechthold A (2001) Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Chem Biol 8(6):557–567

    Article  CAS  Google Scholar 

  • Hoffmeister D, Weber M, Dräger G, Ichinose K, Dürr C, Bechthold A (2004) Rational saccharide extension by using the natural product glycosyltransferase LanGT4. ChemBioChem 5(3):369–371

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Krauth C, Fedoryshyn M, Schleberger C, Luzhetskyy A, Bechthold A (2009) Engineering a function into a glycosyltransferase. Chem Biol 16(1):28–35

    Article  CAS  Google Scholar 

  • Luzhetskyy A, Liu T, Fedoryshyn M, Ostash B, Fedorenko V, Rohr J, Bechthold A (2004) Function of lanGT3, a glycosyltransferase gene involved in landomycin A biosynthesis. ChemBioChem 5(11):1567–1570

    Article  CAS  Google Scholar 

  • Luzhetskyy A, Fedoryshyn M, Dürr C, Taguchi T, Novikov V, Bechthold A (2005) Iteratively acting glycosyltransferases involved in the hexasaccharide biosynthesis of landomycin A. Chem Biol 12(7):725–729

    Article  CAS  Google Scholar 

  • Luzhetskyy A, Méndez C, Salas JA, Bechthold A (2008) Glycosyltransferases, important tools for drug design. Curr Top Med Chem 8(8):680–709

    Article  CAS  Google Scholar 

  • Mittler M, Bechthold A, Schulz GE (2007) Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J Mol Biol 372(1):67–76

    Article  CAS  Google Scholar 

  • Ostash B, Rix U, Remsing Rix LL, Liu T, Lombó F, Luzhetskyy A, Gromyko O, Wang C, Brana AF, Méndez C, Salas JA, Fedorenko V, Rohr J (2004) Generation of new landomycins by combinatorial biosynthetic manipulation of the lndGT4 gene of the landomycin E cluster in S. globisporus. Chem Biol 11(4):547–555

    Article  CAS  Google Scholar 

  • Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechtold A, Fedorenko V (2003) Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222(1):149–153

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Trefzer A, Fischer C, Stockert S, Westrich L, Künzel E, Girreser U, Rohr J, Bechthold A (2001) Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 8(12):1239–1252

    Article  CAS  Google Scholar 

  • Weber W, Zolke C, Rohr J (1994) Investigations of the biosynthesis and structural revision of landomycin A. J Org Chem 59:4211–4214

    Article  CAS  Google Scholar 

  • Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170(2):381–387

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Volker Brecht, Institute of Pharmaceutical Sciences, University of Freiburg, for conducting the fragmentation analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bechthold.

Additional information

A. Erb and C. Krauth contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, A., Krauth, C., Luzhetskyy, A. et al. Differences in the substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis. Appl Microbiol Biotechnol 83, 1067–1076 (2009). https://doi.org/10.1007/s00253-009-1993-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1993-9

Keywords

Navigation